Torben Agidius Mogensen

Introduction
to Compiler
Design

Third Edition

UTiCS @ Springer

Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky @, Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin @, Department of Computing, Imperial College London, London, UK

Mike Hinchey (2, Lero—The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Hanne Riis Nielson), Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Tain Stewart (@, Department of Computer Science, Durham University, Durham, UK

Joseph Migga Kizza, Engineering and Computer Science, University of Tennessee
at Chattanooga, Chattanooga, TN, USA

Roy Crole, School of Computing and Mathematics Sciences, University of
Leicester, Leicester, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTICS concept centers on high-quality, ideally and generally quite
concise books in softback format. For advanced undergraduate textbooks that are
likely to be longer and more expository, Springer continues to offer the highly
regarded Texts in Computer Science series, to which we refer potential authors.

Torben Agidius Mogensen

Introduction to Compiler
Design

Third Edition

@ Springer

Torben Agidius Mogensen
Datalogisk Institut
Kgbenhavns Universitet
Copenhagen, Denmark

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-46459-1 ISBN 978-3-031-46460-7 (eBook)

https://doi.org/10.1007/978-3-031-46460-7

13¢ edition: © Springer-Verlag London Limited 2011
2nd & 31 editions: © Springer International Publishing AG 2017, 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-46460-7

Preface

Language is a process of free creation; its laws and principles
are fixed, but the manner in which the principles of generation
are used is free and infinitely varied. Even the interpretation and
use of words involves a process of free creation.

Noam Chomsky (1928-)

In order to reduce the complexity of designing and building computers, nearly all of
these are made to execute relatively simple commands (but do so very quickly). A
program for a computer must be built by combining these very simple commands into
aprogram in what is called machine language. Since this is a tedious and error-prone
process, most programming is done using a high-level programming language. This
language can be very different from the machine language that the computer can
execute, so some means of bridging the gap is required. This is where the compiler
comes in.

A compiler translates (or compiles) a program written in a high-level programming
language that is suitable for human programmers into the low-level machine language
that is required by computers. During this process, the compiler will also attempt to
detect and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast
programs can be developed. The main reasons for this are:

e Compared to machine language, the notation used by programming languages is
closer to the way humans think about problems.
The compiler can detect some types of programming mistakes.
Programs written in a high-level language tend to be shorter than equivalent
programs written in machine language.

Another advantage of using a high-level language is that the same program can be
compiled to many different machine languages, and hence be brought to run on many
different machines.

vi Preface

On the other hand, programs that are written in a high-level language and automat-
ically translated to machine language may run somewhat slower than programs that
are hand-coded in machine language. Hence, some time-critical programs are still
written partly in machine language. A good compiler will, however, be able to get very
close to the speed of hand-written machine code when translating well-structured
programs. Additionally, what code is optimal may change when a new version of a
processor is made, so to remain optimal, a hand-written machine language program
may need to be rewritten, whereas a program in a high-level language just needs to
be recompiled using a compiler that optimizes for the new version of the processor.

The Phases of a Compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with well-
defined interfaces between them. Conceptually, these phases operate in sequence
(though in practice, they are often interleaved), each phase (except the first) taking
the output from the previous phase as its input. It is common to let each phase be
handled by a separate program module. Some of these modules are written by hand,
while others may be generated from specifications. Often, some of the modules can
be shared between several compilers.

A common division into phases is described below. In some compilers, the
ordering of phases may differ slightly, some phases may be combined or split into
several phases or some extra phases may be inserted between those mentioned below.

Lexical analysis This is the initial part of reading and analyzing the program text:
The text is read and divided into fokens, each of which corresponds to a symbol in the
programming language, e.g., a variable name, keyword or number. Lexical analysis
is often abbreviated to lexing.

Syntax analysis This phase takes the list of tokens produced by the lexical analysis
and arranges these in a tree-structure (called the syntax tree) that reflects the structure
of the program. This phase is often called parsing.

Type checking This phase analyzes the syntax tree to determine if the program
violates certain consistency requirements, e.g., if a variable is used but not declared,
or if it is used in a context that does not make sense given the type of the variable,
such as trying to use a Boolean value as a function pointer.

Intermediate code generation The program is translated to a simple machine-
independent intermediate language.

Register allocation The symbolic variable names used in the intermediate code are
translated to numbers, each of which corresponds to a register in the target machine
code.

Preface vii

Machine code generation The intermediate language is translated to assembly
language (a textual representation of machine code) for a specific machine archi-
tecture.

Assembly and linking The assembly language code is translated into binary
representation and addresses of variables, functions, etc., are determined.

The first three phases are collectively called the front end of the compiler and the last
three phases are collectively called the back end. The middle part of the compiler is
in this context only the intermediate code generation, but this often includes various
optimizations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes invariants on the
data it passes on to the next phase. For example, the type checker can assume the
absence of syntax errors, and the code generation can assume the absence of type
errors. These invariants can reduce the burden of writing the later phases.

Assembly and linking are typically done by programs supplied by the machine
or operating system vendor, and are hence not part of the compiler itself. We will
not further discuss these phases in this book, but assume that a compiler produces
its result as symbolic assembly code.

Interpreters

An interpreter is another way of implementing a programming language. Interpre-
tation shares many aspects with compiling. Lexing, parsing and type-checking are
in an interpreter done just as in a compiler. But instead of generating code from the
syntax tree, the syntax tree is processed directly to evaluate expressions, execute
statements, and so on. An interpreter may need to process the same piece of the
syntax tree (for example, the body of a loop) many times, and hence interpretation
is typically slower than executing a compiled program. But writing an interpreter
is often simpler than writing a compiler, and an interpreter is easier to move to a
different machine, so for applications where speed is not of essence, or where each
part of the program is executed only once, interpreters are often used.

Compilation and interpretation may be combined to implement a programming
language. For example, the compiler may produce intermediate-level code which is
then interpreted rather than compiled to machine code. In some systems, there may
even be parts of a program that are compiled to machine code, some parts that are
compiled to intermediate code that is interpreted at runtime, while other parts may
be interpreted directly from the syntax tree. Each choice is a compromise between
speed and space: Compiled code tends to be bigger than intermediate code, which
tends to be bigger than syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is more
important to be able to test a program modification quickly rather than run the program
efficiently. And since interpreters do less work on the program before execution

viii Preface

starts, they are able to start running the program more quickly. Furthermore, since an
interpreter works on a program representation that is closer to the source code than
to the compiled code, error messages can be more precise and informative.

We will discuss interpreters briefly in Chap. 4, but they are not the main focus of
this book.

Why Learn About Compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Java or Haskell. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are:

(a) Itis considered a topic that you should know in order to be “well-cultured” in
computer science.

(b) A good craftsman should know his tools, and compilers are important tools for
programmers and computer scientists.

(c) The techniques used for constructing a compiler are useful for other purposes
as well.

(d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.
Reason “b” is more convincing: Understanding how a compiler is built will allow
programmers to get an intuition about what their high-level programs will look
like when compiled, and use this intuition to tune programs for better efficiency.
Furthermore, the error reports that compilers provide are often easier to understand
when one knows about and understands the different phases of compilation, such as
knowing the difference between lexical errors, syntax errors, type errors, and so on.
The third reason is also quite valid. In particular, the techniques used for reading
(lexing and parsing) the text of a program and converting this into a form (abstract
syntax) that is easily manipulated by a computer, can be used to read and manipulate
any kind of structured text such as XML documents, JSON files, address lists, etc.
Reason “d” is becoming more and more important as domain-specific languages
(DSLs) are gaining in popularity. A DSL is a (typically small) language designed for
a narrow class of problems. Examples are database query languages, text-formatting
languages, 3D modeling languages, and languages for setting up economic simu-
lations. The target language for a compiler for a DSL may be traditional machine
code, but it can also be another high-level language for which compilers already
exist, a sequence of control signals for a machine, or formatted text and graphics in
some printer-control language (e.g., PostScript). DSLs are often interpreted instead
of compiled. Even so, all DSL compilers and interpreters will have front ends for

Preface ix

reading and analyzing the program text that is similar to those used in compilers and
interpreters for general-purpose languages.

In brief, the methods needed to make a compiler front end are more widely appli-
cable than the methods needed to make a compiler back end, but the latter is more
important for understanding how a program is executed on a machine.

About the Third Edition of the Book

The third edition has been extended with material about the SSA form, parametric
polymorphism (templates), garbage collection, and pattern matching. This extra
material is aimed at advanced B.Sc.-level courses or M.Sc.-level courses. Addi-
tionally, typos have been fixed and clarifications as well as a few more examples
have been added.

To the Lecturer

This book was written for use in the introductory compiler course at DIKU, the
Department of Computer Science at the University of Copenhagen, Denmark.

At times, standard techniques from compiler construction have been simplified
for presentation in this book. In such cases, references are made to books or articles
where the full version of the techniques can be found.

The book aims at being “language neutral”. This means two things:

e With a few exceptions, little detail is given about how the methods in the book can
be implemented in any specific language. Rather, the description of the methods
is given in the form of algorithm sketches and textual suggestions of how these
can be implemented in various types of languages, in particular, imperative and
functional languages.

e There is no single through-going example of a language to be compiled. Instead,
different small (sub-)languages are used in various places to cover exactly the
points that the text needs. This is done to avoid drowning in detail, hopefully
allowing the readers to “see the wood for the trees”.

Each chapter has a section on further reading, which suggests additional reading
material for interested students. Chapters also have sets of exercises. Few of these
require access to a computer, but can be solved on paper or blackboard. After some
of the sections in the book, a few easy exercises are listed as suggested exercises. It
is recommended that the student attempts to solve these exercises before continuing
reading, as the exercises support understanding of the previous sections.

Teaching with this book can be supplemented with project work, where students
write simple compilers. Since the book is language neutral, no specific project is
given. Instead, the teacher must choose relevant tools and select a project that fits the

< Preface

level of the students and the time available. Depending on the amount of project work
and on how much of the advanced material added in the second and third editions,
the book can support course sizes ranging from 5 to 12 ECTS points.

The following link contains extra material for the book, including solutions to
selected exercises—sn.pub/hMOU3o0.

Copenhagen, Denmark Torben Agidius Mogensen

https://sn.pub/hMOU3o

Acknowledgements

Most people return small favors, acknowledge medium ones and
repay greater ones—with ingratitude.

Benjamin Franklin (1705-1790)

The author wishes to thank all the people who have been helpful in making this book
areality. This includes the students who have been exposed to earlier versions of the
book and notes that made it into the 2nd and 3rd editions of the book at the compiler
courses “DatlE”, “Oversattere”, “Implementering af programmeringssprog” and
“Advanced Language Processing” at DIKU (the Department of Computer Science
at The University of Copenhagen), and who have found numerous typos and other
errors in the earlier versions. I would also like to thank the co-teachers and instructors
of these courses, who have pointed out places where things were not as clear as they
could be. Lastly, I would like to thank the people who have used the previous editions
of the book and suggested material for this third edition.

Copenhagen, Denmark Torben Agidius Mogensen
August 2023

xi

Contents

1 Lexical Analysis
1.1 Regular EXpressionsoiueiiiiinneinnneann.
1.1.1 Shorthands il

1.1.2 Examples

1.2 Nondeterministic Finite Automata
1.3 Converting a Regular Expressiontoan NFA
1.3.1 Optimisations ...,

1.4 Deterministic Finite Automata
1.5 Convertingan NFAtoaDFA
1.5.1 Solving Set Equations

1.5.2 The Subset Constructioncooou....

1.6 Size Versus Speed i
1.7 Minimisation of DFAS i
1.7.1 Example

1.7.2 Dead States ...t

1.8 Lexers and Lexer Generatorsooeeeeiunnnneann.
1.8.1 Lexer Generatorsoovuiiieeeeea...

1.9 Properties of Regular Languages
1.9.1 Relative Expressive Power

1.9.2 Limits to Expressive Power

1.9.3 Closure Properties,

1.10 FurtherReading i i i
LI1 EXEICISES .ottt
References i i
2 Syntax Analysis
2.1 Context-Free Grammarsoueineiineennnenn..
2.1.1 How to Write Context-Free Grammars

2.2 Derivationt
2.2.1 Syntax Trees and Ambiguity

Xiii

Xiv

Contents

2.3 Operator Precedence, 50
2.3.1 Rewriting Ambiguous Expression Grammars 52

24 Other Sources of Ambiguity, 55
2.5 Syntax Analysis i 56
2.6 Predictive Parsing i 56
2.7 Nullable and FIRST i, 57
2.8 Predictive Parsing Revisited 61
2.9 Follow ... 63
2.10 ALargerExample L. 65
211 LL(D)Parsing ... 67
2.11.1 Recursive Descent 68

2.11.2 Table-Driven LL(1) Parsing 69

2113 Conflicts ...t 72

2.12 Rewriting a Grammar for LL(1) Parsing 72
2.12.1 Eliminating Left-Recursion 73

2.12.2 Left-Factorisation 75

2.12.3 Construction of LL(1) Parsers Summarised 76

213 SLRParsing i 76
2.14 Constructing SLR Parse Tables 79
2.14.1 Conflicts in SLR Parse-Tables 83

2.15 Using Precedence Rules in LR Parse Tables 84
2.16 Using LR-Parser Generatorsc.coouveeuunnn... 86
2.16.1 Conflict Handling in Parser Generators 87

2.16.2 Declarations and Actions 88

2.16.3 Abstract Syntaxiiiiiiiiiiia 88

2.17 Properties of Context-Free Languages 92
2.18 FurtherReading i, 93
2,19 EXEICISES ottt 93
Referencescoouiiii 97
Scopes and Symbol Tables 99
3.1 Symbol Tables i i 100
3.1.1 Implementation of Symbol Tables 100

3.12 Simple Persistent Symbol Tables 101

3.13 A Simple Imperative Symbol Table 102

3.14 Efficiency Issues L. 103

3.1.5 Shared or Separate Name Spaces 103

3.2 Further Reading i 104
33 EXEICISES ..ottt 104
Referenceo 104
Interpretation 105
4.1 The Structure of an Interpreter, 106
4.2 A Small Example Languageciiiiniaa... 106
4.3 An Interpreter for the Example Language 107

43.1 Evaluating Expressions 108

Contents XV
4.3.2 Interpreting Function Calls 110

433 Interpreting a Program 110

4.4 Advantages and Disadvantages of Interpretation 111
4.5 Further Reading i 113
4.6 EXEICISES ..ottt 113
References i 115
5 TypeChecking ... 117
5.1 The Design Space of Type Systemsccouuun.. 118
52 AMIDULES ..o 119
5.3 Environments for Type Checking 120
54 Type Checking of EXpressionsc.ccooivvean.. 120
55 Type Checking of Function Declarations 122
5.6 Type Checking a Program 123
5.7 Advanced Type Checking, 124
5.8 Further Reading i 127
59 EXEICISES .ottt 127
References i 128
6 Intermediate-Code Generation 129
6.1 Designing an Intermediate Language 131
6.2 The Intermediate Language, 132
6.3 Syntax-Directed Translation 134
6.4 Generating Code from Expressions 134
6.4.1 Examples of Expression Translation 137

6.5 Translating Statementsuueiiiiiinnnn.. 138
6.5.1 Example of Statement Translation 141

6.6 Logical Operatorsuuuieeeiiiinneeeiinneenn. 141
6.6.1 Sequential Logical Operators 143

6.6.2 Example of Translation of Conditions 145

6.7 Advanced Control Statementsc.uuuuunan.. 146
6.8 Translating Structured Data i, 147
6.8.1 Floating-Point Values 147

6.8.2 ATTAYS oottt e 148

6.8.3 SHANES « o 153

6.8.4 Records/Structs and Unions 154

6.9 Translation of Declarations, 154
6.9.1 Simple Local Declarations 155

6.9.2 Translation of Function Declarations 156

6.10 FurtherReading 157
6.11 EXEICISES ...ttt ettt 157

Referencesoo i 160

Xvi

Contents

Machine-Code Generation 161
7.1 Conditional Jumps 162
7.2 CONSLANTS .+ v\ttt et ettt ettt e 163
7.3 Exploiting Complex Instructionsco.uu.. 164
7.3.1 Two-Address Instructions 168

7.4 OptMISAtIONSottt e 169
7.5 FurtherReading 170
7.6 EXerCises ..ottt 171
Referencesoouiiiii i 172
Register Allocation, 173
8.1 Livenessot 174
8.2 Liveness Analysisoiuiiiiiiiiinnn 175
8.3 Interferenceo 178
8.4 Register Allocation by Graph Colouring 180
8.5 Spilling 181
8.6 Heuristicso 183
8.6.1 Removing Redundant Moves 185

8.6.2 Using Explicit Register Numbers 185

8.7 Further Reading i 186
8.8 EXEICISES ..ttt 186
References i 188
Functions 189
9.1 The Call Stack ... 189
9.2 Activation Records 190
9.3 Prologues, Epilogues and Call-Sequences 191
9.4 Letting the Callee Save Registers 194
9.5 Caller-Saves Versus Callee-Savesoouuun. 195
9.6 Using Registers to Pass Parameters 196
9.7 Interaction with the Register Allocator 198
9.8 Local Variables ... 200
9.9 Accessing Non-local Variables 200
9.9.1 Global Variables 201

9.9.2 Call-by-Reference Parameters 202

9.10 Functions as Parameterso, 203
911 Variants ... 203
9.11.1 Variable-Sized Frames 203

9.11.2 Variable Number of Parameters 204

9.11.3 Direction of Stack-Growth and Position of FP 204

9.11.4 Register Stacks 204

9.12 Optimisations for Function Calls 205
9.12.1 Inlining ...ttt 205

9.12.2 Tail-Call Optimisationcouuuueeen.. 206

9.13 FurtherReading, 211

Contents

10

11

12

Xvii
.14 EXEICISES .+ttt 212
Referencescooiiii 213
Data-Flow Analysis and Optimisation 215
10.1 Data-Flow Analysis i i, 215
10.2 How to Design a Data-Flow Analysis 216
10.3 Liveness AnalysiSouiiiiiinneiiiiiiiinn.. 216
10.3.1 Improving Liveness Analysis 217
10.4 Generalising from Liveness Analysis 218
10.5 Common Subexpression Elimination 219
10.5.1 Available Assignments 219
10.5.2 Example of Available-Assignments Analysis 222

10.5.3 Using Available Assignment Analysis
for Common Subexpression Elimination 223
10.6 Index-Check Elimination 225
10.7 Jump-to-Jump Elimination 228
10.8 Resources Used by Data-Flow Analysis 230
10.9 Pointer AnalysiS ...ttt 231
10.10 Limitations of Data-Flow Analyses 235
10.11 SSAForm 236
10.11.1 Transforming to SSAForm 236
10.11.2 Usingthe SSAForm 240
10.12 FurtherReading, 241
1013 EXEICISES vttt ettt e e e e e e 241
References i 243
Optimisations for Loops 245
0 150 T o P 245
11.2 Code HOiStingcoournieii i 246
11.3 Memory Prefetching L. 248
11.4 Incrementalisation i, 250
11.4.1 Rules for Incrementalisation 252
11.5 FurtherReadingottt 254
11.6 EXEICISES ...ttt i 254
Referenceo 255
More Language Features, 257
12.1 Parametric Polymorphism 257
12.1.1 Implementing Templates 258
12,12 Variants i i i i i 259
122 Garbage Collection i .. 260
12.2.1 Identifying Pointers 261
1222 ThePFreelisto i i 262
1223 Manual Freeing iiiiiiL. 264
1224 TheMarkPhase 265

1225 TheSweepPhase 267

Contents

Xviii
122.6 Tyingthe Knotsooiiiiiiiiia.. 268
12.27 Remarks About Heap Memory Management 268
12.3 Pattern Matching L 268
124 FurtherReading i 271
125 EXEICISES oottt 272
References i 273
Appendix A: Set Notation and Concepts 275
Index 283

List of Figures

Fig. 1.1 Regular expressions and their derivation 3
Fig. 1.2 Some algebraic properties of regular expressions 4
Fig. 1.3 Exampleof an NFA 8
Fig. 1.4 Constructing NFA fragments from regular

EXPIESSIONS . vttt ettt e e e e 10
Fig. 1.5 NFA for the regular expression (alb)’ac 10
Fig. 1.6 Optimised NFA construction for regular expression

shorthands il 11
Fig. 1.7 Optimised NFA for [0-9]" 12
Fig. 1.8 Exampleof aDFA 12
Fig. 1.9 DFA constructed from the NFAin Fig. 1.5 19
Fig. 1.10 Non-minimal DFA 21
Fig. 1.11 Minimal DFA 23
Fig. 1.12 Combined NFA for several tokens 27
Fig. 1.13 Combined DFA for several tokens 28
Fig. 1.14 A 4-state NFA that gives 15 DFA states 32
Fig. 2.1 Converting regular expressions to context-free

GIAMIMATS « . vt vt ettt ettt et et 45
Grammar 2.2 Simple expression grammar 45
Grammar 2.3 Simple statement grammar 46
Grammar 2.4 Example grammarc..ciiniiniinaan... 47
Fig. 2.5 Derivation of the sequence aabbbcc using

Grammar 2.4 47
Fig. 2.6 Leftmost derivation of the sequence aabbbcc using

Grammar 2.4 47
Fig. 2.7 Syntax tree for the string aabbbcc using Grammar

2 48
Fig. 2.8 Alternative syntax tree for the string aabbbcc using

Grammar 2.4 49
Grammar 2.9 Unambiguous version of Grammar 2.4 49
Fig. 2.10 Fully reduced tree for the syntax tree in Fig. 2.7 51

Xix

XX

Fig. 2.11

Grammar 2.12
Fig. 2.13

Grammar 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18

Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Grammar 2.23
Grammar 2.24
Fig. 2.25
Fig. 2.26
Fig. 2.27
Fig. 2.28
Grammar 2.29
Fig. 2.30
Fig. 2.31

Fig. 2.32
Fig. 2.33

Fig. 2.34
Fig. 2.35
Grammar 4.1
Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 5.1
Fig.5.2
Fig.5.3

Fig. 5.4
Grammar 6.1
Grammar 6.2
Fig. 6.3
Grammar 6.4
Fig. 6.5

Fig. 6.6

Fig. 6.7

List of Figures

Preferred syntax tree for 2+3*4 using Grammar 2.2,

and the corresponding fully reduced tree 51
Unambiguous expression grammar 54
Syntax tree for 2+3*4 using Grammar 2.12,

and the corresponding fully reduced tree 55
Unambiguous grammar for statements 56
Fixed-point iteration for calculation of Nullable 59
Fixed-point iteration for calculation of FIRST 61
Recursive descent parser for Grammar 2.9 69
Tree-building recursive descent parser for Grammar

2 70
LL(1) table for Grammar2.9 70
Program for table-driven LL(1) parsing 71
Input and stack during table-driven LL(1) parsing 71
Tree-building program for table-driven LL(1) parsing 72
Removing left-recursion from Grammar 2.12 74
Left-factorised grammar for conditionals 75
Example shift-reduce parsing 77
SLR table for Grammar2.9 79
Algorithm for SLR parsing 79
Example SLR parsing oo, 80
Example grammar for SLR-table construction 80
NFAs for the productions in Grammar 2.29 81
Combined NFA for Grammar 2.29: epsilon

transitions are added, and A is the only start state 81
DFA constructed from the NFA in Fig. 2.31 82
DFA table for Grammar 2.9, equivalent to the DFA

inFig. 232 ..o 82
Summary of SLR parse-table construction 83
Textual representation of NFA states 88
Example language for interpretation 107
Evaluating expressionscoviuvineinenn.. 109
Evaluating a functioncall 111
Interpreting a programc.viniiniiain.. 112
The design space of type systems 119
Type checking of expressions 121
Type checking a function declaration 123
Type checking aprogramccovun.. 124
The intermediate language 132
A simple expression language 134
Translating an expressionc...oonno... 137
Statement language i 138
Translation of statements 139
Translation of simple conditions 140
Example statementsc..ciiiiin.. 141

List of Figures Xxi

Fig. 6.8 Example statement translation 141
Grammar 6.9 Example language with logical operators 143
Fig. 6.10 Translation of sequential logical operators 144
Fig. 6.11 Example of translating conditions 146
Fig. 6.12 Translation for one-dimensional arrays 149
Fig. 6.13 A two-dimensional array, 150
Fig. 6.14 Translation of multi-dimensional arrays 152
Fig. 6.15 Translation of simple declarations 155
Fig. 6.16 Example function definition translation 156
Fig. 7.1 Pattern/replacement pairs for a subset of the RISC-V

INSrUCiON SEtot 167
Fig. 8.1 Example program for liveness analysis and register

allocation 175
Fig. 8.2 Genandkillsets 176
Fig. 8.3 succ, gen and kill for the program in Fig. 8.1 177
Fig. 8.4 Fixed-point iteration for liveness analysis 178
Fig. 8.5 Interference graph for the program in Fig. 8.1 179
Fig. 8.6 Algorithm 8.6 applied to the graphin Fig. 8.5 182
Fig. 8.7 Program from Fig. 8.1 after spilling variablea 183
Fig. 8.8 Interference graph for the program in Fig. 8.7 183
Fig. 8.9 Colouring of the graphin Fig. 8.8 184
Fig. 9.1 Simple activation record layout 191
Fig. 9.2 Prologue for the header f(pi, ..., pn) using

the frame layout shown in Fig. 9.1 192
Fig. 9.3 Epilogue for the instruction RETURN result using

the frame layout shown in Fig. 9.1 192
Fig. 9.4 Call sequence for x := CALL g(ay, ..., a,) using

the frame layout shownin Fig. 9.1 193
Fig. 9.5 Activation record layout for callee-saves 194
Fig. 9.6 Prologue for the header f(py, ..., pm) using

callee-saves 194
Fig. 9.7 Epilogue for the instruction RETURN result using

callee-saves i i 195
Fig. 9.8 Call sequence for x := CALL g(ay, ..., a,) using

callee-saves 195
Fig. 9.9 Possible division of registers for a 16-register

architecture it 196
Fig. 9.10 Activation record layout for the register division

showninFig.9.9 197
Fig. 9.11 Prologue for the header f(py, ..., pn) using

the register division shown in Fig.9.9 197
Fig. 9.12 Epilogue for the instruction RETURN result using

the register division shownin Fig. 9.9 197
Fig. 9.13 Call sequence for x := CALL g(ay, ..., a,) using

the register division showninFig. 9.9 198

XXii
Fig
Fig
Fig

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

.9.14
.9.15
.9.16
10.1
10.2
10.3
10.4

10.5

10.6
10.7
10.8
10.9

10.10

10.11

10.12
10.13

11.1
11.2
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

List of Figures

Variable capture when inlining 206
Renaming variables when inlining 206
Recursive inlining i 207
Gen and kill sets for available assignments 221
Example code for available-assignments analysis 222
pred, gen and kill for the program in Fig. 10.2 223
Fixed-point iteration for available-assignment

analysis 223
The program in Fig. 10.2 after common subexpression

elimination il 224
gen and kill sets for index-check elimination 227
Intermediate code for a for-loop with index check 228
Equations for pointer analysis 234
First step of SSA transformation of the code

inFig.6.16 237
Second step of SSA transformation of the code

inFig.6.16 237
Third step of SSA transformation of the code

inFig.6.16 238
Complete SSA transformation of the code in Fig. 6.16 238
Applying constant and copy propagation to the code

inFig. 1012 o 240
Incrementalisation of nested loop 251
Eliminating weakly dead variables 252
Two apply functions writteninC 258
A C++ template definition 258
Two declarations generated from a template 258
Example heap object representation 262
Testing if a value is a pointer 263
Example freelist object representation 263
Code for allocating an object 264
Code for manual freeing of objects 265
Code for the mark phase 266
Code for the sweep phase 267

Syntax for patterns, rules, and match expressions 269

Chapter 1 ®)
Lexical Analysis oo

I am not yet so lost in lexicography as to forget that words are
the daughters of earth, and that things are the sons of heaven.
Language is only the instrument of science, and words are but
the signs of ideas.

Samuel Johnson (1709-1784)

The word “lexical” in the traditional sense means “pertaining to words”. In terms of
programming languages, words are entities like variable names, numbers, keywords
etc. Such word-like entities are traditionally called rokens.

A lexical analyser, also called a lexer or scanner, will as input take a string of
individual letters and divide this string into a sequence of classified tokens. Addi-
tionally, it will filter out whatever separates the tokens (the so-called white-space),
i.e., lay-out characters (spaces, newlines etc.) and comments.

The main purpose of lexical analysis is to make life easier for the subsequent
syntax analysis phase. In theory, the work that is done during lexical analysis can be
made an integral part of syntax analysis, and in simple systems this is indeed often
done. However, there are reasons for keeping the phases separate:

e Efficiency: A specialised lexer may do the simple parts of the work faster than the
parser, which uses more general methods, can. Furthermore, the size of a system
that is split in two phases may be smaller than a combined system. This may seem
paradoxical but, as we shall see, there is a non-linear factor involved which may
make a separated system smaller than a combined system.

e Modularity: The syntactical description of the language need not be cluttered with
small lexical details such as white-space and comments.

e Tradition: Languages are often designed with separate lexical and syntactical
phases in mind, and the standard documents of such languages typically sepa-
rate lexical and syntactical elements of the languages.

It is usually not terribly difficult to write a lexer by hand: You first read past initial
white-space, then you, in sequence, test to see if the next token is a keyword, a
© Springer International Publishing AG 2024 1

T. £. Mogensen, Introduction to Compiler Design, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-46460-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46460-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1
https://doi.org/10.1007/978-3-031-46460-7_1

2 1 Lexical Analysis

number, a variable or whatnot. However, this is not a very good way of handling
the problem: You may read the same part of the input repeatedly while testing each
possible token, and in some cases it may not be clear where one token ends and
the next begins. Furthermore, a handwritten lexer may be complex and difficult to
maintain. Hence, lexers are normally constructed by lexer generators, that transform
(somewhat) human-readable specifications of tokens and white-space into efficient
programs.

We will see the same general strategy in the chapter about syntax analysis: Spec-
ifications in a well-defined human-readable notation are transformed into efficient
programs.

For lexical analysis, specifications are traditionally written using regular expres-
sions: An algebraic notation for describing sets of strings. The generated lexers are
in a class of extremely simple programs called finite automata.

This chapter will describe regular expressions and finite automata, their properties
and how regular expressions can be converted to finite automata. Finally, we discuss
some practical aspects of lexer generators.

1.1 Regular Expressions

The set of all integer constants or the set of all variable names are examples of
sets of strings, where the individual digits or letters used to form these constants or
names are taken from a particular alphabet, i.e., a set of characters. A set of strings
is called a language. For integers, the alphabet consists of the digits 0-9 and for
variable names, the alphabet contains both letters and digits (and perhaps a few other
characters, such as hyphens and underscores).

Given an alphabet, we will describe sets of strings over this alphabet by regular
expressions, an algebraic notation that is compact and relatively easy for humans to
use and understand. The idea is that regular expressions that describe simple sets
of strings can be combined to form bigger regular expressions that describe more
complex sets of strings. Regular expressions are often called “regexps” for short.

When talking about regular expressions, we will use the letters 7, s and ¢ in italics
to denote unspecified regular expressions. When letters stand for themselves (i.e., in
regular expressions that describe strings that use these letters) we will use typewriter
font, e.g., a or b. The letters u, v and w in italics will be used to denote unspecified
single strings, i.e., members of some language. As an example, abw denotes any
string starting with abb. When we say, e.g., “The regular expression s” (note the
typewriter font) we mean the regular expression that describes a single one-letter
string “s”, but when we say “The regular expression s” (note the italics), we mean a
regular expression of any form which we just happen to call s. We use the notation
L(s) to denote the language (i.e., set of strings) described by the regular expression
s. For example, L(a) is the set {“a”}.

To find L (s) for a given regular expression s, we use derivation: Rules that rewrite a
regular expression into a string of letters. These rules allow a single regular expression

1.1 Regular Expressions 3

to be rewritten into several different strings, so L(s) is the set of strings that s can
be rewritten to using these rules. L(s) is often an infinite set, but each string in the
set is finite and can be obtained by a finite number of derivation steps. Figure 1.1
shows the different forms of regular expression, the derivation rules for these, and an
informal description of what the regular expression forms mean. Note that we use a
double arrow (=) to denote derivation. In addition to the specific derivation rules in
Fig. 1.1, we also use some general rules to make derivation reflexive and transitive:

s= S Derivation is reflexive
r=1t ifr= sands =t Derivation is transitive

Note that, while we use the same notation for concrete strings and regular expressions
denoting one-string languages, the context will make it clear which is meant. We will
often show strings and sets of strings without using quotation marks, e.g., write {a,
bb} instead of {“a”, “bb”’}. When doing so, we sometimes use ¢ to denote the empty
string, so the derivation s* = shown in Fig. 1.1 can also be written as s* = ¢.

We can use the derivation rules to find the language for a regular expres-
sion. As an example, L(a(b|c)) = {ab, ac} because a(b|c) = a(b) = ab and
a(b|c) = a(c) = ac. L((alb)*) is infinite and contains any sequence of as and bs,
including the empty sequence. For example, the string ab is in L((a|b)*) because
(alb)* = (alb)(alb)* = a(alb)* = a(alb)(alb)* = ab(alb)* = ab.

Parentheses and Precedence Rules

When we use the symbols above to construct composite regular expressions such
as alab®, it is not a priori clear how the different subexpressions are grouped. We
will sometimes (like we did above) use parentheses to make the grouping of symbols
explicit such as in (a|(ab))*. Additionally, we use precedence rules, similar to the
algebraic convention that multiplication binds stronger than additions, so 3 +4 x 5

Regexp Derivation rules Informal description

a The one-letter string a. No derivation rule,
as it is already a string.

€ €= Denotes and reduces to the empty string.
st slt=s Either s or 7. Note that this allows multiple
slt=1t different derivations.
st st=s't,ifs=s andr=7 Something derived from s followed by some-
thing derived from z.
s* 5= A concatenation of any number (including 0)
s* = s(s%) of strings derived from s. The number de-
pends on how many times the second rule is
used.

Fig. 1.1 Regular expressions and their derivation

4 1 Lexical Analysis

is equivalent to 3 4+ (4 x 5) and not (3 + 4) x 5. For regular expressions, we use the
following conventions: * binds tighter than concatenation, which binds tighter than
alternative (]). The example a|ab* from above is, hence, equivalent to a|(a(b*)).
The | operator is associative and commutative. Concatenation is associative (but
obviously not commutative) and distributes over |. Figure 1.2 shows these and other
algebraic properties of regular expressions, including properties of some of the short-
hands introduced below.
Suggested exercise: 1.1.

1.1.1 Shorthands

While the constructions in Fig. 1.1 suffice to describe e.g., number strings and variable
names, we will often use extra shorthands for convenience. For example, if we want
to describe non-negative integer constants, we can do so by saying that a number
constant is a sequence of one or more digits, which is expressed by the regular
expression

(011121314]5161718]9)(0]1123]4]5]6]7|8]9)"

The large number of different digits makes this expression rather verbose. It gets
even worse when we get to variable names, where we must enumerate all alphabetic
letters (in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. A sequence of letters enclosed
in square brackets represents the set of these letters. For example, we use [ab01]
as a shorthand for a|b|0|1. Additionally, we can use interval notation to abbreviate
[0123456789] to [0-9]. We can combine several intervals within one bracket and
for example write [a—zA-Z] to denote all alphabetic letters in both lower and upper
case.

When using intervals, we must be aware of the ordering for the symbols involved.
For the digits and letters used above, there is usually no confusion. However, if we

Fig. 1.2 Some algebraic (rls)|t = rislt = r|(s|r) | is associative.
properties of regular slt = ts | is commutative.
expressions sls = s | is idempotent.
s? = sle by definition.
(rs)t = rst = r(st) concatenation is associative.
SE =5 = & € is a neutral element for concatenation.
r(s|t) = rs|rt concatenation distributes over |.
(rls)t = ri|st concatenation distributes over |.
(s*)* = s* * is idempotent.
s'st o= 5" 0 or more twice is still 0 or more.
sst = st = 5% by definition.
(sT)" = s T is idempotent.

sts* = 5T = s still just at least 1

1.1 Regular Expressions 5

write, e.g., [0—z] itis not immediately clear what is meant. When using such notation
in lexer generators, a character set encoding such as ASCII, ISO 8859-1, or UTF-8 is
usually implied, so the symbols are ordered as defined by these encodings. To avoid
confusion, we will in this book use the interval notation only for intervals of digits
or alphabetic letters.

Getting back to the example of integer constants above, we can now write this
much shorter as [0-9][0-9]*.

Since s* denotes zero or more occurrences of s, we needed to write the set of digits
twice to describe that one or more digits are required. Such non-zero repetition is quite
common, so we introduce another shorthand, s, to denote one or more occurrences
of 5. With this notation, we can abbreviate our description of integers to [0-9]". On
a similar note, it is common that we can have zero or one occurrence of something
(e.g., an optional sign to a number). Hence we introduce the shorthand s? for s|e.
The shorthand symbols * and ? bind with the same precedence as *.

We must stress that these shorthands are just that. They do not allow more
languages to be described, they just make it possible to describe some languages
more compactly. In the case of s*, it can even make an exponential difference:
If * is nested n deep, recursive expansion of st to ss* yields 2"—1 occurrences
of * in the expanded regular expression. For example, ((atb)*tc)t expands to
aa*b(aa*b)*c(aa*b(aa*b)*c)*.

1.1.2 Examples

We have already seen how we can describe non-negative integer constants using
regular expressions. Here are a few examples of other typical programming language
elements:

Keywords. A keyword like 1f is described by a regular expression that looks
exactly like that keyword, e.g., the regular expression i f (which is the concate-
nation of the two regular expressions 1 and f).

Variable names. In the programming language C, a variable name consists of let-
ters, digits and the underscore symbol and it must begin with a letter or underscore.
This can be described by the regular expression [a—zA-Z_][a—zA-Z_0-9]*.

Integers. Aninteger constant is an optional sign followed by a non-empty sequence
of digits: [+-]?[0-9]*. In some languages, a signed constant is not a single token,
but a concatenation of two tokens: the sign and an unsigned number constant.
This will usually allow whitespace between the sign and the number, which is not
possible with the above.

Floats. In C, a floating-point constant can have an optional sign. After this, the
mantissa part is described as a sequence of digits followed by a decimal point and
then another sequence of digits. Either one (but not both) of the digit sequences
can be empty. Finally, there is an optional exponent part, which is the letter e (in
upper or lower case) followed by an (optionally signed) integer constant. If there

6 1 Lexical Analysis

is an exponent part to the constant, the mantissa part can be written as an integer
constant (i.e., without the decimal point). Some examples:

3.14 -3. .23 3e+4 11.22e-3.

This rather involved format can be described by the following regular expression:

[+-12((([0-9]". [0-9]" | . [0-9]") ([eE][+-1?[0-91%)?)
| [0-9]" [eE][+-]1?[0-9]")

This regular expression is complicated by the fact that the exponent is optional if
the mantissa contains a decimal point, but not if it does not (as that would make
the number an integer constant). We can make the description simpler if we make
the regular expression for floats also include integers, and instead use other means
of distinguishing integers from floats (see Sect. 1.8 for details). If we do this, the
regular expression can be simplified to

[+-12(([0-91" (. [0-91%)?]. [0-9T") ([eE][+~1?[0-91")?)

Some languages require digits on both sides of the decimal point (if there is a
decimal point). This simplifies the description considerably, as there are fewer
special cases:

[+-12(([0-91" (. [0-91")?([eE][+~1?[0-91")?)

String constants. A string constant starts with a quotation mark followed by a
sequence of symbols and finally another quotation mark. There are usually some
restrictions on the symbols allowed between the quotation marks. For example,
line-feed characters or quotes are typically not allowed, though these may be
represented by special “escape” sequences of other characters, such as “\n\n”
for a string containing two line-feeds. As a (much simplified) example, we can
by the following regular expression describe string constants where the allowed
symbols are alphanumeric characters and sequences consisting of the backslash
symbol followed by a letter (where each such pair is intended to represent a
non-alphanumeric symbol):

“(la—zA-20-9]|\[a~zA~Z]) *”

Suggested exercises: 1.2, 1.11(a).

1.2 Nondeterministic Finite Automata 7

1.2 Nondeterministic Finite Automata

In our quest to transform regular expressions into efficient programs, we use a step-
ping stone: Nondeterministic finite automata. By their nondeterministic nature, these
are not quite as close to “real machines” as we would like, so we will later see how
these can be transformed into deterministic finite automata, which are easily and
efficiently executable on normal hardware.

A finite automaton is, in the abstract sense, a machine that has a finite number of
states and a finite number of transitions between pairs of states. A transition between
two states is usually labelled by a character from the input alphabet, but we will also
use transitions marked with &, the so-called epsilon transitions.

A finite automaton can be used to decide if an input string is a member in some
particular set of strings. To do this, we select one of the states of the automaton as the
starting state. We start in this state, and in each step we can do one of the following:

e Follow an epsilon transition to another state, or
e Read a character from the input and follow a transition labelled by that character.

When all characters from the input are read, we see if the current state is marked as
being accepting. If this is the case, the string we have read from the input is in the
language defined by the automaton. Otherwise, it is not.

At each step, we may have a choice of several actions: We can choose between
either an epsilon transition or a transition on an alphabet character, and if there are
several transitions with the same symbol, we can choose between these. This makes
the automaton nondeterministic, as the choice of action is not determined solely by
looking at the current state and the next input character. It may be that some choices
lead to an accepting state while others do not. This does, however, not mean that the
string is sometimes in the language and sometimes not: We will include a string in
the language if it is possible to make a sequence of choices that makes the string lead
to an accepting state.

You can think of it as solving a maze with symbols written in the corridors. If you
can find the exit while walking over the letters of the string in the correct order, the
string is recognised by the maze.

We can formally define a nondeterministic finite automaton by:

Definition 1.1 A nondeterministic finite automaton consists of a set S of states.
One of these states, sy € §, is called the starting state of the automaton, and a subset
F C § of the states are accepting states. Additionally, we have a set T of transitions.
Each transition ¢ connects a pair of states s; and s, and is labelled with a symbol,
which is either a character ¢ from an alphabet X, or the symbol ¢, which indicates
an epsilon-transition. A transition from state s to state # on the symbol ¢ is written
as s°t.

Starting states are sometimes called initial states and accepting states can also be
called final states (which is why we use the letter F' to denote the set of accepting

8 1 Lexical Analysis

Fig. 1.3 Example of an NFA

00

states). We use the abbreviations FA for finite automaton, NFA for nondeterministic
finite automaton and (later in this chapter) DFA for deterministic finite automaton.

We will mostly use a graphical notation to describe finite automata. States are
denoted by circles, optionally containing a number or name that identifies the state.
This name or number has, however, no operational significance, it is solely used for
identification purposes. Accepting states are denoted by using a double circle instead
of a single circle. The initial state is marked by an unlabelled arrow pointing to it
from outside the automaton.

A transition is denoted by an arrow connecting two states. Near its midpoint, the
arrow is labelled by the symbol (possibly ¢) that triggers the transition. Note that the
arrow that marks the initial state is not a transition and is, hence, not labelled by a
symbol.

Repeating the maze analogue, the circles (states) are rooms and the arrows (tran-
sitions) are one-way corridors. The double circles (accepting states) are exits, while
the unlabelled arrow pointing to the starting state is the entrance to the maze.

Figure 1.3 shows an example of a nondeterministic finite automaton having three
states. State 1 is the starting state, and state 3 is accepting. There is an epsilon-
transition from state 1 to state 2, transitions on the symbol a from state 2 to states 1
and 3, and a transition on the symbol b from state 1 to state 3. This NFA recognises
the language described by the regular expression a*(a|b). As an example, the string
aab is recognised by the following sequence of transitions:

from to by
1 2 &
2 1 a
1 2 ¢
2 1 a
1 3 b

At the end of the input we are in state 3, which is accepting. Hence, the string is
accepted by the NFA. You can check this by placing a coin at the starting state and
follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we are in state
2 and the next symbol is an a, we can, when reading this, either go to state 1 or
to state 3. Likewise, if we are in state 1 and the next symbol is a b, we can either
read this and go to state 3, or we can use the epsilon transition to go directly to state

1.3 Converting a Regular Expression to an NFA 9

2 without reading anything. If we, in the example above, had chosen to follow the
a-transition to state 3 instead of state 1, we would have been stuck: We would have
no legal transition, and yet we would not be at the end of the input (and even if we
were, we are not in an accepting state). But, as previously stated, it is enough that
there exists a path leading to acceptance, so the string aab is accepted by the NFA.

A program that decides if a string is accepted by a given NFA will have to check
all possible paths to see if any of these accepts the string. This requires either back-
tracking until a successful path found, or simultaneously following all possible paths.
Both of these methods are too time-consuming to make NFAs suitable for efficient
recognisers. We will, hence, use NFAs only as a stepping stone between regular
expressions and the more efficient DFAs. We use this stepping stone because it
makes the construction simpler than direct construction of a DFA from a regular
expression.

1.3 Converting a Regular Expression to an NFA

We will construct an NFA compositionally from a regular expression, i.e., we will
construct the NFA for a composite regular expression from the NFAs constructed
from its subexpressions.

To be precise, we will from each subexpression construct an NFA fragment and
then combine these fragments into bigger fragments. A fragment is not a complete
NFA, so we complete the construction by adding the necessary components to make
a complete NFA.

An NFA fragment consists of a number of states with transitions between these
and additionally two incomplete transitions: One pointing into the fragment and one
pointing out of the fragment. The incoming half-transition is not labelled by a symbol,
but the outgoing half-transition is labelled by either ¢ or an alphabet symbol. These
half-transitions are the entry and exit to the fragment and are used to connect it to
other fragments or additional “glue” states.

Construction of NFA fragments for regular expressions is shown in Fig. 1.4. The
construction follows the structure of the regular expression by first making NFA
fragments for the subexpressions, and then joining these to form an NFA fragment
for the whole regular expression. The NFA fragments for the subexpressions are
shown as dotted ovals with the incoming half-transition on the left and the outgoing
half-transition on the right. The symbol on the outgoing half-transition is not shown
when an NFA fragment is shown as a dotted oval (it is “hidden” inside the oval).

When an NFA fragment has been constructed for the whole regular expression, the
construction is completed by connecting the outgoing half-transition to an accepting
state. The incoming half-transition serves to identify the starting state of the com-
pleted NFA. Note that, even though we allow an NFA to have several accepting states,
an NFA constructed using this method will have only one: the one added at the end
of the construction.

An NFA constructed this way for the regular expression (a|b)*ac is shown in
Fig. 1.5. We have numbered the states for future reference.

10 1 Lexical Analysis

Regular expression NFA fragment
a | 2
&€
€ — —
st R s X P

€
— =

Fig. 1.4 Constructing NFA fragments from regular expressions

Fig. 1.5 NFA for the regular expression (a|b)*ac

1.3 Converting a Regular Expression to an NFA 11

Fig. 1.6 Optimised NFA Regular expression NFA fragment
construction for regular
expression shorthands

0

- <P
9

:Q.LQE

1.3.1 Optimisations

We can use the construction in Fig. 1.4 for any regular expression by expanding out
all shorthand, e.g. converting s to ss*, [0-9] to 0|1|2]---]9, s? to s|¢, and so on.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands, as shown in Fig. 1.6. Additionally, we
show an alternative construction for the regular expression ¢. This construction does
not quite follow the formula used in Fig. 1.4, as it does not have two half-transitions.
Rather, the line-segment notation is intended to indicate that the NFA fragment for
¢ just connects the half-transitions of the NFA fragments that it is combined with.
In the construction for [0—9], the vertical ellipsis is meant to indicate that there is a
transition for each of the digits in [0—9]. This construction generalises in the obvious
way to other sets of characters, e.g., [a—zA—-Z0-9]. We have not shown a special
construction for s? as s|e will do fine when we use the optimised construction for ¢.
As an example, an NFA for [0=9]" is shown in Fig. 1.7. Note that while this is
optimised, it is not optimal. You can (in several different ways) make an NFA for
this language using only two states.
Suggested exercises: 1.3(a), 1.11(b).

12 1 Lexical Analysis

Fig. 1.7 Optimised NFA for 0

_g1t+
[0-9] /—\

Fig. 1.8 Example of a DFA

1.4 Deterministic Finite Automata

Nondeterministic automata are, as mentioned earlier, not quite as close to “the
machine” as we would like. Hence, we now introduce a more restricted form of
finite automaton: The deterministic finite automaton, or DFA for short. DFAs are
special cases of NFAs that obey a number of additional restrictions:

e There are no epsilon-transitions.
e There may not be two identically labelled transitions out of the same state.

This means that we never have a choice of several next-states: The state and the next
input symbol uniquely determine the transition (or lack of same). This is why these
automata are called deterministic. Figure 1.8 shows a DFA equivalent to the NFA in
Fig. 1.3. Using the maze analogy, finding an exit is easy, as you are never in doubt
about which corridor to follow.

The transition relation of a DFA is a partial function, and we often write it as a
function: move(s, c) is the state (if any) that is reached from state s by a transition
on the symbol c. If there is no such transition, move(s, c) is undefined.

It is very easy to implement a DFA on a computer: A two-dimensional table can
be cross-indexed by state and symbol to yield the next state (or an indication that
there is no transition), essentially implementing the move function by table lookup.
Another (one-dimensional) table can indicate which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special case of
NFA, and any NFA can (as we shall shortly see) be converted to an equivalent
DFA. However, the benefit of deterministic transitions comes at a cost: The resulting

1.5 Converting an NFA to a DFA 13

DFA can be exponentially larger than the NFA (see Sect. 1.9). In practice (i.e., when
describing tokens for a programming language) the increase in size is usually modest,
which is why most lexical analysers are based on DFAs.

Suggested exercises: 1.8(a, b), 1.9.

1.5 Converting an NFA to a DFA

As promised, we will show how NFAs can be converted to DFAs such that we, by
combining this with the conversion of regular expressions to NFAs shown in Sect. 1.3,
can convert any regular expression to a DFA.

The conversion is done by simulating all possible transitions in an NFA at the
same time. This means that we operate with sets of NFA states: When we have
several choices of a next state, we take all of the choices simultaneously and form
a set of the possible next-states. Given a set of NFA states and a symbol, we follow
all transitions on that symbol from all states in the set, which gives us a new set of
NFA states. So we get transitions from sets of NFA states to sets of NFA states. The
transitions are deterministic because we from one set of NFA states and one symbol
have exactly one (possibly empty) set of NFA states that the transition moves to. The
idea is that different sets of NFA states become different single states in the DFA
that we construct.

Epsilon-transitions complicate the construction a bit: Whenever we are in an NFA
state with an outgoing epsilon-transition, we can always choose to follow the epsilon-
transition without reading any symbol. Hence, given a symbol, a next-state can be
found by either following a transition with that symbol, or by first doing any number
of epsilon-transitions and then a transition with the symbol. We handle this in the
construction by extending sets of NFA states by adding all NFA states that can be
reached from states in the set using only epsilon-transitions. We define the epsilon-
closure of a set of NFA states as the set extended with all NFA states that can be
reached from these using any number of epsilon-transitions. More formally:

Definition 1.2 Given a set M of NFA states, we define e-closure(M) to be the least
(in terms of the subset relation) set X that is a solution to the set equation

X=MU{t|s € X and st € T}

Where T is the set of transitions in the NFA.

We will later on see several examples of set equations like the one above, so we
use some time to discuss how such equations can be solved.

1.5.1 Solving Set Equations

The following is a very brief description of how to solve set equations like the above.
If you find it confusing, you can read the Appendix and in particular Sect. A.4 first.

14 1 Lexical Analysis
In general, a set equation over a single set-valued variable X has the form
X =F(X)

where F is a function from sets to sets. Not all such equations are solvable, so we
will restrict ourselves to special cases, which we will describe below. We will use
calculation of epsilon-closure as the driving example.

In Definition 1.2, we must find a set X that solves the equation

X=MU{t|s e Xands’t € T}
To cast this equation into the form X = F(X) for a function f, we define Fj; to be
Fy(X)=MU{t|s € Xand st € T}

There may be several solutions to the equation X = F);(X). For example, if the NFA
has a pair of states that connect to each other by epsilon transitions, adding this pair
to a solution that does not already include the pair will create a new solution. The
epsilon-closure of M is the least solution to the equation (i.e., the smallest set X that
satisfies the equation).

F)y has a property that is essential to our solution method: If X € Y then Fy, (X) C
Fy (Y). We say that Fy, is monotonic.

When we have an equation of the form X = F(X) and F is monotonic, we can
find the least solution to the equation in the following way: We first guess that the
solution is the empty set (written as ¢J) and check to see if we are right: We compare
¢ with F (). If these are equal, we are done and ¢ is the solution. If not, we use the
following properties:

e The least solution S to the equation satisfies S = F(S)
e J C S implies that F (@) C F(S)

to conclude that F () C S. Hence, F(9) is either S or a subset of S, so we can use
it as a new guess. We now form the chain

WS FW S FFE®)C...

If at any point an element in the sequence is identical to the previous, we have a
fixed-point, i.e., a set S such that S = F(S). This fixed-point of the sequence will be
the least (in terms of set inclusion) solution to the equation. This is not difficult to
verify, but we will omit the details. Since we are iterating a function until we reach
a fixed-point, we call this process fixed-point iteration.

If we are working with sets over a finite domain (e.g., sets of NFA states from
a specific NFA), we will eventually reach a fixed-point, as there can be no infinite
chain of strictly increasing sets.

We can use this method for calculating the epsilon-closure of the set {1} with
respect to the NFA shown in Fig. 1.5. Since we want to find e-closure({1}), M = {1},

1.5 Converting an NFA to a DFA 15
so Fy = Fyjy. We start by guessing that X is the empty set:

Fuy@) ={1}U{t|s € Pand s°t € T}
= {1}

As @ # {1}, we continue.

Fuy(Fin(9) = Fiy({1)
— (1}U{r|s € {1} and s°1 € T}
={1}U{2,5} = {1,2,5}

Foy(Fuy(Fiy@)) = Fuy({1, 2, 5))
— (1 U{t|s € (1,25 and s°f € T}
={1}U{2,5,6,7} = {1,2,5,6,7}

Foy(Fiy(Fiy(Fiy(9)))) = Fuy({1,2, 5,6, 7))
—(1}U{r|s€{1,2,5,6 7 and s°1 € T}
={1}U{2,5,6,7} = {1,2,5,6,7}

We have now reached a fixed-point and found our solution. Hence, we conclude that
e-closure({1}) = {1, 2,5,6,7}.

We have done a good deal of repeated calculation in the iteration above: We have
calculated the epsilon-transitions from state 1 three times and those from state 2 and
5 twice each. We can make an optimised fixed-point iteration by exploiting that the
function is not only monotonic, but also distributive: F(X UY) = F(X) U F(Y).
This means that, when we during the iteration add elements to our set, we in the next
iteration need only calculate F for the new elements and add the result to the set. In
the example above, we get

Fuy@) ={1}U{t |s € P and s°t € T}
= {1}
Fuy((1) = (1} U {t | s € {1} and s°t € T}
—{1}U{2,5} = {1,2,5)

Fay({1,2,5) = Fiy({1h) U Fiy ({2, 51)
—{1,2,5)U({1}U{r | s € {2,5) and s°1 € T})
={1,2,5lu({1yu{6, 7)) = {1,2,5,6,7}

Fy({1,2,5,6,7h) = Fipn(
={1,2,
={1,2,

1,2,5) U F({6, 71)
5,6, 7YU{1}U{t|s € {6,7}and s°t € T})
5,6, 77U {1}up) = {1,2,5,6,7}

16 1 Lexical Analysis

We can use this principle to formulate a work-list algorithm for finding the least
fixed-point for an equation over a distributive function F. The idea is that we step-
by-step build a set that eventually becomes our solution. In the first step, we calculate
F (9). The elements in this initial set are unmarked. In each subsequent step, we take
an unmarked element x from the set, mark it and add F ({x}) (unmarked) to the set.
Note that if an element already occurs in the set (marked or not), it is not added again.
When, eventually, all elements in the set are marked, we are done.

This is perhaps best illustrated by an example (the same as before). We start by
calculating Fi;;(¥) = {1}. The element 1 is unmarked, so we pick this, mark it and
calculate F;;({1}) and add the new elements 2 and 5 to the set. As we continue, we
get this sequence of sets:

Since all elements in the last set are marked, this is a solution to the equation.

We will later also need to solve simultaneous equations over sets, i.e., several
equations over several sets. These can also be solved by fixed-point iteration in the
same way as single equations, though the work-list version of the algorithm becomes
a bit more complicated.

1.5.2 The Subset Construction

After this brief detour into the realm of set equations, we are now ready to continue
with our construction of DFAs from NFAs. The construction is called the subset
construction, as each state in the DFA is a subset of the states from the NFA.

Algorithm 1.3 (The subset construction) Given an NFA N with states S, starting
state 5o € S, accepting states F' C S, transitions T, and alphabet X', we construct an
equivalent DFA D with states S, starting state s;, accepting states F', and a transition
function (called “move’) by:

sy = e-closure({so})

move(s’, ¢) = e-closure({t | s € s’ and st € T})
S = {sp} U {move(s',c) | s' € §', c € X}
F={"e€S|sNF ##}

1.5 Converting an NFA to a DFA 17

The DFA uses the same alphabet X' as the NFA.

A little explanation:

The starting state s, of the DFA is the epsilon-closure of the set containing just
the starting state sy of the NFA, i.e., the states that are reachable from s solely by
epsilon-transitions.

A transition in the DFA on a symbol ¢ is done by finding the set s of NFA states
that comprise the DFA state, following all transitions on ¢ in the NFA from all
NFA states s in s’, combining the resulting sets of NFA states, and finally closing
this under epsilon transitions.

The set S’ of states in the DFA is the set of DFA states that can be reached from
s, using the move function. S’ is defined as a set equation which can be solved as
described in Sect. 1.5.1.

A state s in the DFA is an accepting state if at least one of the NFA states in s’ is
accepting.

As an example, we will convert the NFA in Fig. 1.5 to a DFA.

The initial state in the DFA is e-closure({1}), which we have already calculated to

be sy = {1,2,5, 6, 7}. This is now entered into the set S’ of DFA states as unmarked
(following the work-list algorithm from Sect. 1.5.1).

We now pick an unmarked element from the uncompleted S’. We have only one

choice: s;. We now mark this and calculate the transitions for it. We get

move(sy, a) = e-closure({t | s € {1,2,5,6,7} and s°t € T})
= e-closure({3, 8})
=1{3,8,1,2,5,6,7}

o
=

move(s, b) = e-closure({t | s € {1,2,5,6,7} and sPt e T}
= e-closure({8})
=1{8,1,2,5,6,7}
= S/
2

move(s), c) = e-closure({t | s € {1,2,5,6,7} and st € T})
= e-closure({})

={}

Note that the empty set of NFA states is not an DFA state, so there will be no transition
from s;, on c.

v
We now add 5] and s; to our incomplete S’, which now is {s, s, s5}. We now

pick s}, mark it and calculate its transitions:

18 1 Lexical Analysis

move(s|, a) = e-closure({t | s € {3,8,1,2,5,6,7} and s°t € T})
= e-closure({3, 8})
{3,8,1,2,5,6,7}

o
=5

move(s;, b) = e-closure({t | s € {3,8,1,2,5,6,7} and s°t € T})
= e-closure({8})
={8,1,2,5,6,7}

= sé

move(s;, c) = e-closure({t | s € {3,8,1,2,5,6,7} and s°t € T})
= e-closure({4})
= {4}

o
= 53

VR
/ / 7 . / / / / : /.
We have seen s| and s, before, so only s3 is added: {s, s}, 53, s3}. We next pick s5:

move(sy, a) = e-closure({t | s € {8,1,2,5,6,7} and s° € T})
= ¢-closure({3, 8})
=1{3,8,1,2,5,6,7}

o
=5

move(s,, b) = e-closure({t | s € {8,1,2,5,6,7} and s*t € T})
= e-closure({8})
=1{8,1,2,5,6,7}
= sé

move(sy, c) = e-closure({t | s € {8,1,2,5,6,7} and s°t € T'})
= e-closure({})

={}
No new elements are added, so we pick the remaining unmarked element s5:
move(sy, a) = e-closure({t | s € {4} and s*t € T})

e-closure({})

{}

move(s, b) = e-closure({t | s € {4} and sPt e T}
e-closure({})

={}

move(s, c) = e-closure({t | s € {4} and st € T})

e-closure({})

{}

1.6 Size Versus Speed 19

Fig. 1.9 DFA constructed

a
from the NFA in Fig. 1.5 O
a
C
@ ? < > b
b @
b
Since all states are now marked, this completes the construction of S" = {s;, 1, 53, 53}

Only s} contains the accepting NFA state 4, so this is the only accepting state of our
DFA. Figure 1.9 shows the completed DFA.

Suggested exercises: 1.3(b), 1.5.

1.6 Size Versus Speed

In the above example, we get a DFA with 4 states from an NFA with 8 states. How-
ever, as the states in the constructed DFA are (nonempty) sets of states from the NFA
there may potentially be 2" —1 states in a DFA constructed from an n-state NFA.
It is not too difficult to construct classes of NFAs that expand exponentially in this
way when converted to DFAs, as we shall see in Sect. 1.9.1. Since we are mainly
interested in NFAs that are constructed from regular expressions as in Sect. 1.3, we
might ask ourselves if these NFAs might not be in a suitably simple class that do not
risk exponential-sized DFAs. Alas, this is not the case. Just as we can construct a
class of NFAs that expand exponentially, we can construct a class of regular expres-
sions where the smallest equivalent DFAs are exponentially larger. This happens
rarely when we use regular expressions or NFAs to describe tokens in programming
languages, though.

It is possible to avoid the blow-up in size by operating directly on regular expres-
sions or NFAs when testing strings for inclusion in the languages these define. How-
ever, there is a speed penalty for doing so. A DFA can be run in time & * |v|, where
[v] is the length of the input string v and k is a small constant that is independent
of the size of the DFA.! Regular expressions and NFAs can be run in time close
to ¢ % |N| *x |v|, where |N| is the size of the NFA (or regular expression) and the

!'If memory access is assumed to be constant time, regardless of memory size.

20 1 Lexical Analysis

constant c typically is larger than k. All in all, DFAs are a lot faster to use than NFAs
or regular expressions, so it is only when the size of the DFA is a real problem that
one should consider using NFAs or regular expressions directly.

1.7 Minimisation of DFAs

Even though the DFA in Fig. 1.9 has only four states, it is not minimal. It is easy to
see that states s and s} are equivalent: Neither are accepting and they have identical
transitions. We can hence collapse these states into a single state and get a three-state
DFA.

DFAs constructed from regular expressions through NFAs are often non-minimal,
though they are rarely very far from being minimal. Nevertheless, minimising a DFA
is not terribly difficult and can be done fairly fast, so many lexer generators perform
minimisation.

An interesting property of DFAs is that any regular language (a language that can
be expressed by a regular expression, NFA or DFA) has a unique equivalent minimal
DFA (if states are not labelled). Hence, we can decide equivalence of two regular
expressions (or NFAs or DFAs) by converting both to minimal DFAs and compare
the results.

As hinted above, minimisation of DFAs is done by collapsing equivalent states.
However, deciding whether two states are equivalent is not just done by testing if
their immediate transitions are identical, since transitions to different states may be
equivalent if the target states turn out to be equivalent. For example, in Fig. 1.9, a
transition to s, (if any such existed) should be considered equivalent to a transition to
s, (since s, and s}, are equivalent). Hence, we use a strategy where we first assume all
states to be equivalent and then distinguish them only if we can prove them different.
We use the following rules for this:

e An accepting state is not equivalent to a non-accepting state.

e If two states s; and s, have transitions on the same symbol c to states #; and #,
that we have already proven to be different, then s; and s, are different. This also
applies if only one of s; or s, have a defined transition on c.

This leads to the following algorithm.

Algorithm 1.4 (DFA minimisation) Given a DFA D over the alphabet X' with states
S, where F C S is the set of the accepting states, we construct a minimal DFA
D,.in, where each state is a group of equivalent states from D. The groups in the
minimal DFA are consistent: For any pair of states sy, s, in a group and any symbol
¢, move(sy, c) and move(s,, ¢) are both in the same group, or both are undefined. In
other words, we can not tell s; and s, apart by looking at their transitions.

‘We minimise the DFA D in the following way:

(1) We start with two groups: the set of accepting states F' and the set of non-
accepting states S \ F. Both these groups are initially unmarked.

1.7 Minimisation of DFAs 21

(2) We pick any unmarked group G and check if it is consistent. If it is, we mark it.
If G is not consistent, we split it into maximal consistent subgroups and replace
G by these. A consistent subgroup is maximal if adding any other state from
G to it will make it inconsistent. All groups (not just the newly added) are then
unmarked.

(3) If there are no unmarked groups left, we are done, and the remaining groups are
all consistent, and each group will be a state of the minimal DFA. Otherwise,
we go back to step 2.

The starting state of the minimal DFA is the group that contains the original starting
state, and any group of accepting states is an accepting state in the minimal DFA.

The time needed for minimisation using Algorithm 1.4 depends on the strategy used
for picking groups in step 2. With random choices, the worst case is quadratic in the
size of the DFA, but there exist strategies for choosing groups and data structures for
representing these that guarantee a worst-case time that is O(n x log(n)), where n is
the number of states in the (non-minimal) DFA. In other words, the method can be
implemented so it uses little more than linear time to do minimisation. We will not
here go into further detail but just refer to [1] for the optimal algorithm.

We will, however, note that we can make a slight optimisation to Algorithm 1.4:
A group that consists of a single state needs never be split, so we need never select
such in step 2, and we can stop when all unmarked groups are singletons.

1.7.1 Example

As an example of minimisation, take the DFA in Fig. 1.10.
We now make the initial division into two groups: The accepting and the non-
accepting states.

Fig. 1.10 Non-minimal
DFA

22 1 Lexical Analysis

G, =1{0,6}
G, =1{1,2,3,4,57}

These are both unmarked. We next pick any unmarked group, say G;. To check if
this is consistent, we make a table of its transitions:

G] ab
0 G, -
6 G, —

This is consistent, so we just mark it and select the remaining unmarked group G,

and make a table for this
G, a b

G, Gy
G, G,
— G2
G G,
G, Gy
G G,

~N 0 BRs W

G, is evidently not consistent, so we split it into maximal consistent subgroups and
erase all marks (including the one on G1):

G, = {0, 6}
Gy = {1,2,5)
G, = {3}

Gs = {4,7)

We now pick G3 for consideration:

G3 a b
1 Gs5Gs
2 G4Gs
5 GsGj

This is not consistent either, so we split again and get

G, ={0, 6}
G4 = {3}
Gs={4,7}
Ge ={1,5}
Gr = {2}

We now pick G5 and check this:

1.7 Minimisation of DFAs 23

Fig. 1.11 Minimal DFA

G5 a b
4 GG
7 Gy Gs

This is consistent, so we mark it and pick another group, say, Gg:

G6 a b
1 Gs Gy
5 Gs Gy

This, also, is consistent, so we have only one unmarked non-singleton group left: G .

Gl ab
0 Ge-—
6 Ge¢—

As we mark this, we see that there are no unmarked groups left other than singletons.
Hence, the groups now form a minimal DFA equivalent to the one in Fig. 1.10. The
minimised DFA is shown in Fig. 1.11.

1.7.2 Dead States

Algorithm 1.4 works under some, as yet, unstated assumptions:

e The move function is total, i.e., there are transitions on all symbols from all states,
or
e There are no dead states in the DFA.

A dead state is a state from which no accepting state can be reached. Dead states
do not occur in DFAs constructed from NFAs without dead states, and NFAs with
dead states can not be constructed from regular expressions by the method shown in
Sect. 1.3. Hence, as long as we use minimisation only on DFAs constructed by this

24 1 Lexical Analysis

process, we are safe. However, if we get a DFA of unknown origin, we risk that it
may contain both dead states and undefined transitions.

A transition to a dead state should rightly be equivalent to an undefined transition,
as neither can yield future acceptance. The only difference is that we discover this
earlier on an undefined transition than when we make a transition to a dead state.
However, Algorithm 1.4 will treat these differently and may hence decree a group
to be inconsistent even though it is not. This will make the algorithm split a group
that does not need to be split, hence producing a non-minimal DFA. Consider, for
example, the following DFA:

a
=@
a
States 1 and 2 are, in fact, equivalent, as starting from either one, any sequence of as
(and no other sequences) will lead to an accepting state. A minimal equivalent DFA
consists of a single accepting state with a transition to itself on a.
But Algorithm 1.4 will see a transition on b out of state 2 but no transition on b
out of state 1, so it will not keep states 1 and 2 in the same group. As a result, no

reduction in the DFA is made.
There are two solutions to this problem:

(1) Make sure there are no dead states. This can be ensured by invariant, as is the
case for DFAs constructed from regular expressions by the methods shown in this
chapter, or by explicitly removing dead states before minimisation. Dead states
can be found by a simple reachability analysis for directed graphs (if you can’t
reach an accepting state from state s, s is a dead state). In the above example,
state 3 is dead and can be removed (including the transition to it). This makes
states 1 and 2 stay in the same group during minimisation.

(2) Make sure there are no undefined transitions. This can be achieved by adding a
new dead state (which has transitions to itself on all symbols) and replacing all
undefined transitions by transitions to this dead state. After minimisation, the
group that contains the added dead state will contain all dead states from the
original DFA. This group can now be removed from the minimal DFA (which
will once more have undefined transitions). In the above example, a new (non-
accepting) state 4 has to be added. State 1 has a transition to state 4 on b, state 3
has a transition to state 4 on both a and b, and state 4 has transitions to itself
on both a and b. After minimisation, state 1 and 2 will be joined, as will state 3
and 4. Since state 4 is dead, all states joined with it are also dead, so we can
remove the combined state 3 and 4 from the resulting minimised automaton.

Suggested exercises: 1.6, 1.11(c).

1.8 Lexers and Lexer Generators 25

1.8 Lexers and Lexer Generators

We have, in the previous sections, seen how we can convert a language description
written as a regular expression into an efficiently executable representation (a DFA).
What we want is something more: A program that does lexical analysis, i.e., a lexer:

e A lexer has to distinguish between several different types of tokens, e.g., numbers,
variables and keywords. Each of these are described by its own regular expression.

e A lexer does not check if its entire input is included in the languages defined by
the regular expressions. Instead, it has to cut the input into pieces (tokens), each
of which is included in one (or more) of the languages.

o If there are several ways to split the input into legal tokens, the lexer has to decide
which of these it should use.

A program that takes a set of token definitions (each consisting of a regular expression
and a token name) and generates a lexer is called a lexer generator.

The simplest approach would be to generate a DFA for each token definition and
apply the DFAs one at a time to the input. This can, however, be quite slow, so we will
instead from the set of token definitions generate a single DFA that tests for all the
tokens simultaneously. This is not difficult to do: If the tokens are defined by regular
expressions ry, 12, . . . , I';, then the regular expression r; |, | ... | r, describes the
union of the languages r|, 5, . .., r, and the DFA constructed from this combined
regular expression will scan for all token types at the same time.

However, we also wish to distinguish between different token types, so we must
be able to know which of the many tokens was recognised by the combined DFA.
We can accomplish this with the following construction of a combined DFA:

(1) Construct NFAs Ny, N,, ..., N, foreachof ri,rp, ..., r,.

(2) Mark the accepting states of the NFAs by the name of the tokens they accept.

(3) Combine the NFAs to a single NFA by adding a new starting state which has
epsilon-transitions to each of the starting states of the NFAs.

(4) Convert the combined NFA to a DFA.

(5) Each accepting state of the DFA consists of a set of NFA states, at least one
of which is an accepting state which we marked by token type in step 2. These
marks are used to mark the accepting states of the DFA, so each of these will
indicate all the token types it accepts.

If the same accepting state in the DFA can accept several different token types, it is
because these overlap. This is not unusual, as keywords usually overlap with variable
names and a description of floating point constants may include integer constants as
well. In such cases, we can do one of two things:

e Let the lexer generator generate an error and require the user to make sure the
tokens are disjoint.
e Let the user of the lexer generator choose which of the tokens is preferred.

26 1 Lexical Analysis

It can be quite difficult (though always possible) with regular expressions to define,
e.g., the set of names that are not keywords. Hence, it is common to let the lexer
choose according to a prioritised list. Normally, the order in which tokens are defined
in the input to the lexer generator indicates priority (earlier defined tokens take
precedence over later defined tokens). Hence, keywords are usually defined before
variable names, which means that, for example, the string “i£” is recognised as
a keyword and not a variable name. When an accepting state in a DFA contains
accepting NFA states with different marks, the mark corresponding to the highest
priority (earliest defined) token is used. Hence, we can simply erase all but one mark
from each accepting state. This is a very simple and effective solution to the problem.

When we described minimisation of DFAs, we used two initial groups: One for
the accepting states and one for the non-accepting states. As there are now several
kinds of accepting states (one for each token), we must use one group for each token,
so we will have a total of n + 1 initial groups when we have n different tokens.

To illustrate the precedence rule, Fig. 1.12 shows an NFA made by combining
NFAs for variable names, the keyword i f, integers and floats, as described by the
regular expressions in Sect. 1.1.2. The individual NFAs are (simplified versions of)
what you get from the method described in Sect. 1.4. When a transition is labelled by
a set of characters, it is a shorthand for a set of transitions each labelled by a single
character. The accepting states are labelled with token names as described above.
The corresponding minimised DFA is shown in Fig. 1.13. Note that state G is a com-
bination of states 9 and 12 from the NFA, so it can accept both NUM and FLOAT, but
since integers take priority over floats, we have marked G with NUM only. Similarly,
state C is a combination of states 4 and 6 in the NFA, so it can accept both IF and ID,
but since keyords take precedence over identifiers, we choose to let it accept only IF.

Splitting the Input Stream

As mentioned, the lexer must cut the input into tokens. This may be done in several
ways. For example, the string 1 £17 can be split in many different ways:

As one token, which is the variable name 1 £17.

As the variable name if1 followed by the number 7.

As the keyword 1if followed by the number 17.

As the keyword i f followed by the numbers 1 and 7.

As the variable name i followed by the variable name £17.
And several more.

A common convention is that it is the longest prefix of the input that matches any
token which will be chosen. Hence, the first of the above possible splittings of 1 £17
will be chosen. Note that the principle of the longest match takes precedence over the
order of definition of tokens, so even though the string starts with the keyword 1 £,
which has higher priority than variable names, the variable name is chosen because
it is longer.

Modern languages like C, Java or Haskell follow this convention, and so do most
lexer generators, but some (mostly older) languages like FORTRAN do not. There

1.8 Lexers and Lexer Generators 27

Fig. 1.12 Combined NFA for several tokens

are also fairly new languages that have exceptions to the longest-prefix rule: In F#,
the expression £-1 is split into three tokens: £, —, and 1 even though -1 is a valid
token for a signed number. For example, £ -1 is split into just two tokens (as the
space character is not considered a token), and is read as “the function £ applied to
the number -1, whereas £-1 is read as “f minus one”.

When other conventions are used, lexers must either be written by hand to handle
these conventions, or the conventions used by the lexer generator must be overridden.
Some lexer generators allow the user to have some control over the conventions used.

The principle of the longest matching prefix is handled by letting the DFA read
as far as it can, until it either reaches the end of the input, or no transition is defined
on the next input symbol. If the current state at this point is accepting, we are in
luck, and can simply output the corresponding token. If not, we must go back to the
last time we were in an accepting state and output the token indicated by this. The
characters read since then are put back in the input stream. The lexer must, hence,
retain the symbols it has read since the last accepting state, so it in such situations
can re-insert these in the input. If we are not at the end of the input stream, we restart
the DFA (in its initial state) on the remaining input to find the next tokens.

As an example, consider lexing of the string 3e-y with the DFA in Fig. 1.13.
We get to the accepting state G after reading the digit 3. However, we can continue
making legal transitions to state I on e and then to state J on - (as these could be the

28 1 Lexical Analysis

Fig. 1.13 Combined DFA
for several tokens

[a—zA-Z_0-9]

N A

[0-9] [0-9]

[0-9] [0-9]

&Q\ / onr
/ Lo

FLOAT

start of the exponent part of a real number). It is only when we, in state J, find that
there is no transition on y that we realise that this is not the case. We must now go
back to the last accepting state (G) and output the number 3 as the first token and
re-insert — and e in the input stream, so we can continue with e-y when we look
for the subsequent tokens, which will be the identifier e followed by a lexical error,
since no prefix of -y match any tokens.

Lexical Errors

If no prefix of the input string forms a valid token, a lexical error has occurred.
When this happens, the lexer will usually report an error. At this point, it may stop
reading the input or it may attempt continued lexical analysis by skipping characters
until a valid prefix is found. The purpose of the latter approach is to try finding
further lexical errors in the same input, so several of these can be corrected by the
user before re-running the lexer. Some of these subsequent errors may, however,
not be real errors, but may be caused by the lexer not skipping enough characters
(or skipping too many) after the first error is found. If, for example, the start of a

1.8 Lexers and Lexer Generators 29

comment is ill-formed, the lexer may try to interpret the contents of the comment as
individual tokens, and if the end of a comment is ill-formed, the lexer will read until
the end of the next comment (if any) before continuing, hence skipping too much
text.

When the lexer finds an error, the consumer of the tokens that the lexer produces
(e.g., the rest of the compiler) can not usually itself produce a valid result. However,
the compiler may try to find other errors in the remaining input, again allowing the
user to find several errors in one edit-compile cycle. Again, some of the subsequent
errors may really be spurious errors caused by lexical error(s), so the user will have
to guess at the validity of every error message except the first, as only the first error
message is guaranteed to be a real error. Nevertheless, such error recovery has,
when the input is so large that restarting the lexer from the start of input incurs a
considerable time overhead, proven to be an aid in productivity by locating more
errors in less time. In an integrated development environment, the lexer may work
interactively with a text editor, point to a lexical error in the text, allow the user to
edit the file, and restart from the first modified position in the file when the user
recompiles the program.

1.8.1 Lexer Generators

A lexer generator will typically use a notation for regular expressions similar to
the one described in Fig. 1.1, but may require alphabet-characters to be quoted to
distinguish them from the symbols used to build regular expressions. For example,
an * intended to match a multiplication symbol in the input is distinguished from
an * used to denote repetition by quoting the * symbol, e.g. as '*/, "*" or '*’,
Additionally, some lexer generators extend regular expressions in various ways, e.g.,
allowing a set of characters to be specified by listing the characters that are not in the
set. This is useful, for example, to specify that a comment continues until the next
newline character.

The input to the lexer generator will normally contain a list of regular expressions
that each denote a token. Each of these regular expressions has an associated action.
The action describes what is passed on to the consumer (e.g., the parser), typically
an element from a token data type, which describes the type of token (NUM, ID, etc.)
and sometimes additional information such as the value of a number token, the name
of an identifier token, and the position of the token in the input file. The information
needed to construct such values is typically provided by the lexer generator through
library functions or variables that can be used in the actions.

Normally, the lexer generator requires white-space and comments to be defined by
regular expressions. The actions for these regular expressions are typically empty,
meaning that white-space and comments are just ignored. Note, however, that in
languages (such as Python, Haskell, and F#) where indentation is used to indicate
grouping of statements or expressions, whitespace will sometimes have to generate
tokens to indicate start and end of such groupings.

30 1 Lexical Analysis

An action can be more than just returning a token. If, for example, escape
sequences (for defining, e.g., control characters) are allowed in string constants, the
actions for string tokens will, typically, translate the string containing these sequences
into a string where they have been substituted by the characters they represent. If a
language has a large number of keywords, then a DFA that recognises all of these as
individual tokens can be fairly large. In such cases, the keywords are not described
as separate regular expressions in the lexer definition, but instead treated as special
cases of the identifier token. The action for identifiers will then look the name up in
a table of keywords and return the appropriate token type (or an identifier token if
the name is not found in the table of keywords). A similar strategy can be used if
the language allows identifiers to be equal to keywords, so they are distinguished by
context.

Another use of non-trivial lexer actions is for nested comments. In principle, a
regular expression (or finite automaton) cannot recognise arbitrarily deeply nested
comments (see Sect. 1.9), but by using a global counter, the actions for comment
tokens can keep track of the nesting level.

Sometimes lexer generators allow several different starting points. In the example
in Figs. 1.12 and 1.13, all regular expressions share the same starting state. However,
a single lexer may be used, e.g., for both tokens in the programming language and
for tokens in the input data to that language. Often, there will be a good deal of
sharing between these token sets (the tokens allowed in the input may, for example,
be a subset of the tokens allowed in programs). Hence, it is useful to allow these to
share a NFA, as this will save space. The resulting DFA will have several starting
states. An accepting state may now have more than one token name attached, as
long as these come from different token sets (corresponding to different starting
points).

In addition to using this feature for several sources of text (program and input), it
can be used locally within a single text to read very complex tokens. For example,
nested comments and complex-format strings (with nontrivial escape sequences) can
be easier to handle if this feature is used.

1.9 Properties of Regular Languages

We have talked about regular languages as the class of languages that can be
described by regular expressions or finite automata, but this in itself may not give
a clear understanding of what is possible and what is not possible to describe by
a regular language. We will now state a few properties of regular languages, show
some non-obvious examples of regular and non-regular languages, and give informal
rules of thumb that can (sometimes) be used to decide if a language is regular.

1.9 Properties of Regular Languages 31

1.9.1 Relative Expressive Power

First, we repeat that regular expressions, NFAs and DFAs have exactly the same
expressive power: They all can describe all regular languages and only these. Some
languages may, however, have much shorter descriptions in one of these forms than
in others.

We have already argued that we from a regular expression can construct an NFA
whose size is linear in the size of the regular expression, and that converting an NFA
to a DFA can potentially give an exponential increase in size (see below for a concrete
example of this). Since DFAs are also NFAs, NFAs are clearly at least as compact as
(and sometimes much more compact than) DFAs. Similarly, we can see that NFAs
are at least as compact (up to a small constant factor) as regular expressions. But we
have not yet considered if the converse is true: Can an NFA be converted to a regular
expression of proportional size. The answer is, unfortunately, no: There exist classes
of NFAs (and even DFAs) that need regular expressions that are exponentially larger
to describe them. This is, however, mainly of academic interest as we rarely have to
make conversions in this direction.

If we are only interested in if a language is regular rather than the size or efficiency
of its description, however, it does not matter which of the formalisms we choose, so
we can in each case choose the formalism that suits us best. Sometimes it is easier
to describe a regular language using a DFA or NFA instead of a regular expression.
For example, the set of binary number strings that represent numbers that divide
evenly by 5 can be described by a 6-state DFA (see Exercise 1.10), but it requires a
very complex regular expression to do so. For programming language tokens, regular
expressions are typically quite suitable.

The subset construction (Algorithm 1.3) maps sets of NFA states to DFA states.
Since there are 2" —1 non-empty sets of n NFA states, the resulting DFA can poten-
tially have exponentially more states than the NFA. But can this potential ever be
realised? To answer this, it is not enough to find one n-state NFA that yields a DFA
with 2" —1 states (any one-state NFA does that). We need to find a family of ever
bigger NFAs, all of which yield exponentially-sized DFAs. We also need to argue
that the resulting DFAs are minimal. One construction that has these properties is the
following: For each integer n > 1, construct an n-state NFA in the following way:

1. State O is the starting state and state n—1 is accepting.
2. If 0 <i < n—1, state i has a transition to state i + 1 on the symbol a.
3. All states have transitions to themselves and to state 0 on the symbol b.

Figure 1.14 shows such an NFA for n = 4.

We can represent a set of these states by an n-bit number: Bit i in the number is 1
if and only if state i is in the set. The set that contains only the initial NFA state is,
hence, represented by the binary number 1 zero-extended to n bits. We shall see that
the way a transition maps a set of states to a new set of states can be expressed as an
operation on the number:

32 1 Lexical Analysis

Fig. 1.14 A 4-state NFA
that gives 15 DFA states

0 2+ 1 a~ma~@
ORI OO

b b b

e A transition on a maps the number x to (2x mod (2")).
e A transition on b maps the number x to itself and (x OR 1), using bitwise OR.

This is not hard to verify, so we leave this to the interested reader. It is also easy
to see that, starting from the number 1, these two operations can generate any n-bit
number. Hence, any subset can be reached by a sequence of transitions, which means
that the subset-construction will generate a DFA state for every possible non-empty
subset of the NFA states.

But is the DFA minimal? If we look at the NFA, we can see that, if i < n—1, an
a leads from state i to i+1, so for each NFA state i there is exactly one sequence of
as that leads to the accepting state, and that sequence has n—1—i as. Hence, a DFA
state whose subset contains the NFA state i will lead to acceptance on a string of
n—1—i as, while a DFA state whose subset does not contain i will not. Hence, for
any two different DFA states, we can find an NFA state i that is in one of the sets but
not the other, and use that to construct a string that will distinguish the DFA states.
Hence, all the DFA states are distinct, so the DFA is minimal.

1.9.2 Limits to Expressive Power

The most basic property of a DFA is that it is finife: It has a finite number of states and
nowhere else to store information. This means, for example, that any language that
requires unbounded counting cannot be regular. An example of this is the language
{a"b" | n > 0}, that is, any sequence of as followed by a sequence of the same
number of bs. If we must decide membership in this language by a DFA that reads
the input from left to right, we must, at the time we have read all the as, know how
many there were, so we can compare this number to the number of bs. But since a
finite automaton cannot count arbitrarily high, the language is not regular. A similar
non-regular language is the language of matching parentheses. However, if we limit
the nesting depth of parentheses to a constant n, we can recognise this language by a
DFA that has n+1 states (0 to n), where state i corresponds to i unmatched opening
parentheses. State O is both the starting state and the only accepting state.

Some surprisingly complex languages are regular. As all finite sets of strings are
regular languages, the set of all legal Java programs of less than a billion characters
is a regular language, though it is by no means a simple one. While it can be argued

1.9 Properties of Regular Languages 33

that it would be an acceptable limitation for a language to allow only programs of
less than a billion characters, it is not practical to describe such a programming
language as a regular language: The description would be far too large. Even if we
ignore such absurdities, we can sometimes be surprised by the expressive power of
regular languages. As an example, given any integer constant n, the set of numbers
(written in binary or decimal notation) that divide evenly by 7 is a regular language
(see Exercise 1.10).

1.9.3 Closure Properties

We can also look at closure properties of regular languages. It is clear that regular
languages are closed under set union: If we have regular expressions s and ¢ for two
languages, the regular expression s|¢ describes the union of these languages. Sim-
ilarly, regular languages are closed under concatenation and unbounded repetition,
as these correspond to basic operators of regular expressions.

Less obviously, regular languages are also closed under set difference and set
intersection. To see this, we first look at set complement: Given a fixed alphabet X,
the complement of the language L is the set of all strings built from the alphabet X,
except the strings found in L. We write the complement of L as L. To get the
complement of a regular language L, we first construct a DFA for the language L
and make sure that all states have transitions on all characters from the alphabet
(as described in Sect. 1.7.2). Now, we simply change every accepting state to non-
accepting and vice versa, and thus get a DFA for L.

We can now (by using the set-theoretic equivalent of De Morgan’s law) construct

LN Ly as Ly UL,. Given intersection, we can now get set difference by L;\L, =
LiNL,.

Regular sets are also closed under a number of common string operations, such
as prefix, suffix, subsequence and reversal. The precise meaning of these words in
the present context is defined below.

Prefix. A prefix of a string w is any initial part of w, including the empty string
and all of w. The prefixes of abc are hence ¢, a, ab and abc.

Suffix. A suffix of a string is what remains of the string after a prefix has been taken
off. The suffixes of abc are hence abc, bc, cande.

Subsequence. A subsequence of a string is obtained by deleting any number of
symbols from anywhere in the string. The subsequences of abc are hence abc,
bc, ac, ab, ¢, b, aande.

Reversal. The reversal of a string is the string read backwards. The reversal of
abc is hence cba.

As with complement, these can be obtained by simple transformations of the DFAs
for the language.

Suggested exercises: 1.12.

34 1 Lexical Analysis

1.10 Further Reading

There are many variants of the method shown in Sect. 1.3. The version presented
here has been devised for use in this book in an attempt to make the method easy to
understand and manageable to do by hand. Other variants can be found in [2, 3].

It is possible to convert a regular expression to a DFA directly without going
through an NFA. One such method [2, 8] actually at one stage during the calculation
computes information equivalent to an NFA (without epsilon-transitions), but more
direct methods based on algebraic properties of regular expressions also exist [4, 10].
These, unlike NFA-based methods, generalise fairly easily to handle regular expres-
sions extended with explicit set-intersection and set-difference operators. A good
deal of theoretic information about regular expressions and finite automata can be
found in [5]. An efficient DFA minimisation algorithm can be found in [6].

Lexer generators can be found for most programming languages. For C, the most
common are Lex [7] and Flex [11]. Some lexer generators, e.g., Quex [12], generate
the states of the DFA as program code instead of using table-lookup. This makes
the generated lexers fast, but can use much more space than a table-driven program.
Quex is also able to handle Unicode characters.

Finite automata and notation reminiscent of regular expressions are also used to
describe behaviour of concurrent systems [9]. In this setting, a state represents the
current state of a process and a transition corresponds to an event to which the process
reacts by changing state.

1.11 Exercises

Exercise 1.1 Given the regular expression s = (alb)(c|d|e),

(a) Using the derivation rules in Fig. 1.1, show that L(s) contains the string ac.
(b) Find the complete set L(s).

Exercise 1.2 In the following, a number-string is a non-empty sequence of decimal
digits, i.e., something in the language defined by the regular expression [0-9]". The
value of a number-string is the usual interpretation of a number-string as an integer
number. Note that leading zeroes are allowed.

Make for each of the following languages a regular expression that describes that
language.

(a) All number-strings that have the value 42.
(b) All number-strings that do not have the value 42.
(c) All number-strings that have a value that is strictly greater than 42.

Exercise 1.3 Given the regular expression a* (a|b) aa:

(a) Construct an equivalent NFA using the method in Sect. 1.3.

1.11 Exercises 35

(b) Convert this NFA to a DFA using Algorithm 1.3.

Exercise 1.4 Given the regular expression ((a|b) (albb)) *:

(a) Construct an equivalent NFA using the method in Sect. 1.3.
(b) Convert this NFA to a DFA using Algorithm 1.3.

Exercise 1.5 Make a DFA equivalent to the following NFA:

)
N O OO €
NA P A A2
b b a

Exercise 1.6 Minimise the following DFA:

b a

Exercise 1.7 Minimise the following DFA:

® 0y 5
al lﬁ b b
bR oS oN

Exercise 1.8 Construct DFAs for each of the following regular languages. In all
cases the alphabet is {a, b}.

(a) The set of strings that has exactly 3 bs (and any number of as).

(b) The set of strings where the number of bs is a multiple of 3 (and there can be
any number of as).

(c) The set of strings where the difference between the number of as and the number
of bs is a multiple of 3.

Exercise 1.9 Construct a DFA that recognises balanced sequences of parenthesis
with a maximal nesting depth of 3, e.g., €,)(), (O(())) or (O0)O() but not (((()))) or
(OOWON).

36 1 Lexical Analysis

Exercise 1.10 Given that binary number strings are read with the most significant
bit first and may have leading zeroes, construct DFAs for each of the following
languages:

(a) Binary number strings that represent numbers that are multiples of 4, e.g., 0,
100 and 10100.

(b) Binary number strings that represent numbers that are multiples of 5, e.g., O,
101,10100and 11001.
Hint: Make a state for each possible remainder after division by 5 and then add
a state to avoid accepting the empty string.

(¢) Given a number n, what is the minimal number of states needed in a DFA that
recognises binary numbers that are multiples of n? Hint: write n as a * 2°, where
a is odd.

Exercise 1.11 The empty language, i.e., the language that contains no strings can be
recognised by a DFA (any DFA with no accepting states will accept this language),
but it can not be defined by any regular expression using the constructions in Sect. 1.1.
Hence, the equivalence between DFAs and regular expressions is not complete. To
remedy this, a new regular expression ¢ is introduced such that L(¢) = .

We will now look at some of the implications of this extension.

(a) Argue why each of the following algebraic rules, where s is an arbitrary regular
expression, is true:

pls =
gs=¢
s =¢
pr=¢

(b) Extend the construction of NFAs from regular expressions to include a case
for ¢.

(c) What consequence will this extension have for converting the NFA to a minimal
DFA? Hint: dead states.

Exercise 1.12 Show that regular languages are closed under prefix, suffix, subse-
quence and reversal, as postulated in Sect. 1.9. Hint: show how an NFA N for a
regular language L can be transformed to an NFA N, for the set of prefixes of strings
from L, and similarly for the other operations.

Exercise 1.13 Which of the following statements are true? Argue each answer infor-
mally.

(a) Any subset of a regular language is itself a regular language.

(b) Any superset of a regular language is itself a regular language.

(c) The set of anagrams of strings from a regular language forms a regular language.
(An anagram of a string is obtained by rearranging the order of characters in the
string, but without adding or deleting any. The anagrams of the string abc are
hence abc, acb, bac, bca, caband cba.)

1.11 Exercises 37

Exercise 1.14 In Figs. 1.12 and 1.13 we used character sets on transitions as short-
hands for sets of transitions, each with one character. We can, instead, extend the
definition of NFAs and DFAs such that such character sets are allowed on a single
transition.

For a DFA (to be deterministic), we must require that transitions out of the same
state have disjoint character sets.

(a) Sketch how Algorithm 1.3 must be modified to handle transitions with sets in
such a way that the disjointedness requirement for DFAs are ensured.

(b) Sketch how Algorithm 1.4 must be modified to handle character sets. A new
requirement for DFA minimality is that the number of transitions as well as the
number of states is minimal. How can this be ensured?

Exercise 1.15 As mentioned in Sect. 1.4, DFAs are often implemented by tables
where the current state is cross-indexed by the next symbol to find the next state. If
the alphabet is large, such a table can take up quite a lot of room. If, for example,
16-bit Unicode is used as the alphabet, there are 216 — 65536 entries in each row
of the table. Even if each entry in the table is only one byte, each row will take up
64 KB of memory, which may be a problem.

A possible solution is to split each 16-bit Unicode character ¢ into two 8-bit
characters c¢; and c;. In the regular expressions, each occurrence of a character ¢
is hence replaced by the regular expression cjc;. This regular expression is then
converted to an NFA and then to a DFA in the usual way. The DFA may (and
probably will) have more states than the DFA using 16-bit characters, but each state
in the new DFA use only 1/256th of the space used by the original DFA.

(a) How much larger is the new NFA compared to the old?

(b) Estimate what the expected size (measured as number of states) of the new DFA
is compared to the old. Hint: Some states in the NFA can be reached only after
an even number of 8-bit characters are read and the rest only after an odd number
of 8-bit characters are read. What does this imply for the sets constructed during
the subset construction?

(c) Roughly, how much time does the new DFA require to analyse a string compared
to the old?

(d) If space is a problem for a DFA over an 8-bit alphabet, do you expect that a
similar trick (splitting each 8-bit character into two 4-bit characters) will help
reduce the space requirements? Justify your answer.

Exercise 1.16 If L is a regular language, so is L\{¢}, i.e., the set of all nonempty
strings in L.

So we should be able to transform a regular expression for L into a regular
expression for L\{e}. We want to do this with a function nonempty that is recursive
over the structure of the regular expression for L, i.e., of the form:

38 1 Lexical Analysis

nonempty(e) = ¢

nonempty(a) =... where a is an alphabet symbol
nonempty(s|t) = nonempty(s) | nonempty(t)

nonempty(st) = ...

nonempty(s?) = ...

nonempty(s*) = ...

nonempty(s™) = ...

where ¢ is the regular expression for the empty language (see Exercise 1.11).

i)

(a) Complete the definition of nonempty by replacing the occurrences of “...” in
the rules above by expressions similar to those shown in the rules for € and s|z.
(b) Use this definition to find nonempty(a*b*).

Exercise 1.17 If L is a regular language, so is the set of all prefixes of strings in L
(see Sect. 1.9.3).

So we should be able to transform a regular expression for L into a regular
expression for the set of all prefixes of strings in L. We want to do this with a
function prefixes that is recursive over the structure of the regular expression for L,
i.e., of the form:

prefixes(e) = ¢

prefixes(a) = a? where a is an alphabet symbol
prefixes(s|t) = prefixes(s) | prefixes(t)
prefixes(st) = ...
prefixes(s*) = ...
prefixes(st) = ...
(a) Complete the definition of prefixes by replacing the occurrences of “...” in the

rules above by expressions similar to those shown in the rules for €, a and s|z.
(b) Use this definition to find prefixes(ab*c).

References

1. Aho, A.V,, Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley (1974)

2. Aho, A.V,, Lam, M.S., Sethi, R., Ullman, J.D.: Compilers; Principles, Techniques and Tools.
Addison-Wesley (2007)

3. Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University Press (1998)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 1(4), 481-494 (1964)

5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation, 2nd edn. Addison-Wesley (2001)

6. Keller, J.P., Paige, R.: Program derivation with verified transformations —a case study. Commun.
Pure Appl. Math. 48(9-10) (1996)

7. Lesk,M.E.: Lex: a Lexical Analyzer Generator. Tech. Rep. 39, AT&T Bell Laboratories, Murray
Hill, N. J. (1975)

References 39

8. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IEEE Trans.
Electron. Comput. 9(1), 39-47 (1960)
9. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
10. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J. Funct. Program.
19(2), 173-190 (2009). https://doi.org/10.1017/S0956796808007090
11. Paxson, V.: Flex, version 2.5, a fast scanner generator (1995). http://www.gnu.org/software/
flex/manual/html_mono/flex.html
12. Schifer, FR.: Quex - fast universal lexical analyzer generator (2004-2011). http://quex.
sourceforge.net. Accessed Sept 2014

https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://www.gnu.org/software/flex/manual/html_mono/flex.html
http://quex.sourceforge.net
http://quex.sourceforge.net
http://quex.sourceforge.net
http://quex.sourceforge.net

Chapter 2 ®)
Syntax Analysis e

Syntax and vocabulary are overwhelming constraints—the rules
that run us. Language is using us to talk—we think we’re using
the language, but language is doing the thinking, we’re its
slavish agents.

Harry Mathews (1930-2017)

Where lexical analysis splits a text into tokens, the purpose of syntax analysis (also
known as parsing) is to recombine these tokens. Not back into a list of characters, but
into something that reflects the structure of the text. This “something” is typically a
data structure called the syntax tree of the text. As the name indicates, this is a tree
structure. The leaves of this tree are the tokens found by the lexical analysis, and if
the leaves are read from left to right, the sequence is the same as in the input text.
Hence, what is important in the syntax tree is how these leaves are combined to form
the structure of the tree, and how the interior nodes of the tree are labelled.

In addition to finding the structure of the input text, the syntax analysis must also
reject invalid texts by reporting syntax errors.

As syntax analysis is less local in nature than lexical analysis, more advanced
methods are required. We, however, use the same basic strategy: A notation suitable
for human understanding and algebraic manipulation is transformed into a machine-
like low-level notation suitable for efficient execution. This process is called parser
generation.

The notation we use for human manipulation is context-free grammars," which
is a recursive notation for describing sets of strings and imposing a structure on
each such string. This notation can in some cases be translated almost directly into
recursive programs, but it is often more convenient to generate stack automata. These
are similar to the finite automata used for lexical analysis, but they can additionally
use a stack, which allows counting and non-local matching of symbols. We shall see

1 Because derivation is independent of context, as we will see.

© Springer International Publishing AG 2024 41
T. £. Mogensen, Introduction to Compiler Design, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-46460-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46460-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2
https://doi.org/10.1007/978-3-031-46460-7_2

42 2 Syntax Analysis

two ways of generating such automata. The first of these, LL(1), is relatively simple,
but works only for a somewhat restricted class of grammars. The SLR construction,
which we present later, is more complex but handles a wider class of grammars.
Sadly, neither of these work for all context-free grammars. Tools that handle all
context-free grammars do exist, but they can incur a severe speed penalty, which
is why most parser generators restrict the class of input grammars to what can be
parsed efficiently using a specific method. This may require rewriting an otherwise
correct grammar for a language into a form that can be handled by the method
or by providing additional information to resolve ambiguities. We will show some
techniques for doing so.

2.1 Context-Free Grammars

Like regular expressions, context-free grammars describe sets of strings, i.e., lan-
guages. Additionally, a context-free grammar also defines structure on the strings in
the language it defines. A language is defined over some alphabet, for example the
set of tokens produced by a lexer or the set of alphanumeric characters. The symbols
in the alphabet are called terminals.

A context-free grammar recursively defines several sets of strings. Each set is
denoted by a name, which is called a nonterminal. The set of nonterminals is disjoint
from the set of terminals. One of the nonterminals are chosen to denote the main
language described by the grammar. This nonterminal is called the start symbol of
the grammar, and plays a role similar to the start state of a finite automaton. The sets
are described by a number of productions. Each production describes some of the
possible strings that are contained in the set denoted by a nonterminal. A production
has the form

N—> X 1.-- X n

where N is a nonterminal and X ... X,, are zero or more symbols, each of which is
either a terminal or a nonterminal. The intended meaning of this notation is to say
that the set denoted by N contains strings that are obtained by concatenating strings
from the sets denoted by X ... X,,. In this setting, a terminal denotes a set consisting
of a single string consisting of a single symbol, just like an alphabet character in a
regular expression denotes a set consisting of a single string consisting of a single
character. We will, when no confusion is likely, equate a nonterminal with the set of
strings it denotes, like we did for alphabet characters in regular expressions.
Some examples:
A—a

says that the set denoted by the nonterminal A contains the one-character string a.

A — aA

2.1 Context-Free Grammars 43

says that the set denoted by A contains all strings formed by putting an a in front of
a string taken from the set denoted by A. Together, these two productions indicate
that A contains all non-empty sequences of as and is hence (in the absence of other
productions) equivalent to the regular expression a™.
We can define a grammar equivalent to the regular expression a* by the two

productions

B —

B — aB

where the first production indicates that the empty string is part of the set B. Compare
this grammar with the definition of s* in Fig. 1.1.

Productions with empty right-hand sides are called empty productions. These are
in some variants of grammar notation written with an ¢ on the right hand side instead
of leaving it empty.

So far, we have not described any set that could not just as well have been
described using regular expressions. Context-free grammars are, however, capable of
expressing much more complex languages. In Sect. 1.9, we noted that the language
{a"b" | n > 0} is not regular. It is, however, easily described by the grammar

S —
S — aSb

The second production ensures that the as and bs are p